Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 8
1,133
Views
8
CrossRef citations to date
0
Altmetric
Articles

Microwave-assisted synthesis of α-aminophosphine oxides by the Kabachnik-Fields reaction applying amides as the starting materials

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1047-1054 | Received 01 Feb 2019, Accepted 14 Feb 2019, Published online: 26 Mar 2019

References

  • Keglevich, G.; Bálint, E. The Kabachnik-Fields Reaction: Mechanism and Synthetic Use. Molecules. 2012, 17, 12821-12835. DOI: 10.3390/molecules171112821.
  • Bálint, E.; Tripolszky, A.; Tajti, Á. Synthesis of α-Aminophosphonates by the Kabachnik-Fields Reaction and by the Pudovik Reaction, In: Organophosphorus Chemistry - Novel Developments, Keglevich, G., Ed. de Gruyter: Germany, 2018; pp 108-147.
  • Kafarski, P.; Górniak, M. G.; Andrasiak, I. Kabachnik-Fields Reaction under Green Conditions - A Critical Overview. Curr. Green Chem. 2015, 2, 218-222. DOI: 10.2174/2213346102666150109203606.
  • Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: Chichester, 2000.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955-5980. DOI: 10.1021/jm200587f.
  • Forlani, G.; Berlicki, L.; Duo, M.; Dziedziola, G.; Giberti, S.; Bertazzini, M.; Kafarski, P.; Synthesis Evaluation, o. Effective Inhibitors of Plant δ1-Pyrroline-5-Carboxylate Reductase. J. Agric. Food Chem. 2013, 61, 6792-6798. DOI: 10.1021/jf401234s.
  • Sienczyk, M.; Oleksyszyn, J. Irreversible Inhibition of Serine Proteases - design and in Vivo Activity of Diaryl Alpha-aminophosphonate Derivatives. Curr. Med. Chem. 2009, 16, 1673-1687. DOI: 10.2174/092986709788186246.
  • Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Lanthanide Triflate-catalyzed Three Component Synthesis of α-Amino Phosphonates in Ionic Liquids. A Catalyst Reactivity and Reusability Study. Chem. Commun. 2001, 2001, 1698-1699. DOI: 10.1039/b104967b.
  • Wu, J.; Sun, W.; Xia, H.-G.; Sun, X. A Facile and Highly Efficient Route to α-Amino Phosphonates via Three-Component Reactions Catalyzed by Mg(ClO4)2 or Molecular Iodine. Org. Biomol. Chem. 2006, 4, 1663-1666. DOI: 10.1039/B602536F.
  • Bhattacharya, A. K.; Kaur, T. An Efficient One-pot Synthesis of α-Amino Phosphonates Catalyzed by Bismuth Nitrate Pentahydrate. Synlett. 2007, 2007, 745-748. DOI: 10.1055/s-2007-970762.
  • Bhagat, S.; Chakraborti, A. K. An Extremely Efficient Three-component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik − Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem. 2007, 72, 1263-1270. DOI: 10.1021/jo062140i.
  • Zhang, Y.; Zhu, C. Gold Complex-Catalyzed C-P Bond Formation by Kabachnik-Fields Reactions. Catal. Commun. 2012, 28, 134-137. DOI: 10.1016/j.catcom.2012.08.001.
  • Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gampleb, S. P. Sarkarb, D. Highly Efficient One-pot Multi-component Synthesis of α-Aminophosphonates and Bis-α-aminophosphonates Catalyzed by Heterogeneous Reusable Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2) at Ambient Temperature and Their Antitubercular Evaluation against Mycobactrium Tuberculosis. RSC Adv. 2014, 4, 7666-7672. DOI: 10.1039/c3ra45853a.
  • Lewkowski, J.; Moya, M. R.; Wrona-Piotrowicz, A.; Zakrzewski, J.; Kontek, R.; Gajek, G. Synthesis, Fluorescence Properties and the Promising Cytotoxicity of Pyrene-Derived Aminophosphonates. Beilstein J. Org. Chem. 2016, 12, 1229-1235. DOI: 10.3762/bjoc.12.117.
  • Shady, A. A.; Bakr, S. M. A.; Khidre, M. D. Synthesis of Various Schiff Bases Containing Isoxazole Ring and Their Applications with Thioglycollic Acid and Diverse Phosphorus Reagents. J. Heterocyclic Chem. 2017, 54, 71-79. DOI: 10.1002/jhet.2541.
  • Li, N.; Wang, X.; Qiu, R.; Xu, X.; Chen, J.; Zhang, X.; Chen, S.; Yin, S. Air-stable Zirconocene Bis(perfluorobutanesulfonate) as a Highly Efficient Catalyst for Synthesis of α-Aminophosphonates via Kabachnik-Fields Reaction under Solvent-free Condition. Catal. Commun. 2014, 43, 184-187. DOI: 10.1016/j.catcom.2013.10.013.
  • Keglevich, G.; Szekrényi, A. Eco-friendly Accomplishment of the Extended Kabachnik-Fields Reaction; a Solvent- and Catalyst-free Microwave-assisted Synthesis of α- Aminophosphonates and α-Aminophosphine Oxides. Lett. Org. Chem. 2008, 5, 616-622. DOI: 10.2174/157017808786857598.
  • Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. An Eco-friendly Approach for the Synthesis of α-Aminophosphonates Using Ionic Liquids. Green Chem. 2002, 4, 436-438. DOI: 10.1039/B203934F.
  • Boroujeni, K. P.; Shirazi, E. R.; Doroodmand, M. M. Synthesis of α-Aminophosphonates Using Carbon Nanotube Supported Imidazolium Salt-Based Ionic Liquid as a Novel and Environmentally Benign Catalyst. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 683-688. DOI: 10.1080/10426507.2015.1072182.
  • Eshghi, H.; Mirzaei, M.; Hasanpour, M.; Mokaber-Esfahani, M. Benzimidazolium Dicationic Ionic Liquid as an Efficient and Reusable Catalyst for the Synthesis of α-Aminophosphonates and Bis (α-aminophosphonates) under Solvent-Free Condition. Phosphorus, Sulfur, Silicon Relat. Elem. 2015, 190, 1606-1620. DOI: 10.1080/10426507.2015.1012199.
  • Kumar, M. A.; Park, Y.-K.; Lee, K. D. Synthesis and Antiproliferative Activity of Novel α-Aminophosphonates. Chem. Pharm. Bull. 2012, 60, 1531-1537. DOI: 10.1248/cpb.c12-00676.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-pot Three-component Condensation of Carbonyl Compound, amine and Diethyl Phosphite without Solvent and Catalyst. Green Chem. 2002, 4, 551-554. DOI: 10.1039/B205747F.
  • Kabachnik, M. I.; Zobnina, E. V.; Beletskaya, I. P. Catalyst-free Microwave-Assisted Synthesis of α-Aminophosphonates in a Three-component System: R1C(O)R2-(EtO)2P(O)H-RNH2. Synlett. 2005, 2005, 1393-1396. DOI: 10.1055/s-2005-868519.
  • Mu, X.-J.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Microwave-Assisted Solvent-free and Catalyst-free Kabachnik-Fields Reactions for α-Amino Phosphonates. Tetrahedron Lett. 2006, 47, 1125-1127. DOI: 10.1016/j.tetlet.2005.12.027.
  • Bálint, E.; Fazekas, E.; Pinter, G.; Szollosy, A.; Holczbauer, T.; Czugler, M.; Drahos, L.; Körtvélyesi, T.; Keglevich, G. Synthesis and Utilization of the Bis(>P(O)CH2)amine Derivatives Obtained by the Double Kabachnik-Fields Reaction with Cyclohexylamine; quantum Chemical and X-ray Study of the Related Bidentate Chelate Platinum Complexes. Curr. org. Chem. 2012, 16, 547-554. DOI: 10.2174/138527212799499822.
  • Bálint, E.; Takács, J.; Drahos, L.; Juranovič, A.; Kočevar, M.; Keglevich, G. Oxides by the Microwave‐Assisted Kabachnik-Fields Reactions of 3‐amino‐6‐methyl‐2 H‐pyran‐2‐Ones. Heteroatom Chem. 2013, 24, 221-225. DOI: 10.1002/hc.21086.
  • Bálint, E.; Tripolszky, A.; Jablonkai, E.; Karaghiosoff, K.; Czugler, M.; Mucsi, Z.; Kollár, L.; Pongrácz, P.; Keglevich, G. Synthesis and Use of α-Aminophosphine Oxides and N,N-bis(phosphinoylmethyl)amines - A Study on the Related Ring Platinum Complexes. J. Organomet. Chem. 2016, 801, 111-121. DOI: 10.1016/j.jorganchem.2015.10.029.
  • Bálint, E.; Tajti, Á.; Kalocsai, D.; Mátravölgyi, B.; Karaghiosoff, K.; Czugler, M.; Keglevich, G. Synthesis and Utilization of Optically Active α-Aminophosphonate Derivatives by Kabachnik-Fields Reaction. Tetrahedron. 2017, 73, 5659-5667. DOI: 10.1016/j.tet.2017.07.060.
  • Prishchenko, A. A.; Livantsov, M. V.; Novikova, O. P.; Livantsova, L. I.; Petrosyan, V. S. Synthesis of Bis‐ and Tris‐organophosphorus Substituted Amines and Amino Acids with PCH2N Fragments. Heteroatom Chem. 2010, 21, 430-440. DOI: 10.1002/hc.20616.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Talan, A. S.; Davletshin, R. R.; Kurnosova, N. V. Synthesis of New Liophilic Functionalized Aminomethylphosphine Oxides and Their Acid-base and Membrane-Transport Properties Toward Acidic Substrates. Russ. J. Gen. Chem. 2009, 79, 1835-1849. DOI: 10.1134/S1070363209090114.
  • Keglevich, G.; Szekrényi, A.; Szöllősy, Á.; Drahos, L. Synthesis of Bis(phosphonatomethyl)-, Bis(phosphinatomethyl)-, and Bis(phosphinoxidomethyl)amines, as Well as Related Ring Bis(phosphine) platinum Complexes. Synth. Commun. 2011, 41, 2265-2272. DOI: 10.1080/00397911.2010.501478.
  • Dimitrev, M. E.; Ragulin, V. V. New Opinions on the Amidoalkylation of Hydrophosphorylic Compounds. Tetrahedron Lett. 2010, 51, 2613-2616. DOI: 10.1016/j.tetlet.2010.03.020.
  • Skorenski, M.; Oleksyszyn, J.; Sienczyk, M. Efficient Methods for the Synthesis of α-Aminophosphonate Fluoroalkyl Esters. Tetrahedron Lett. 2013, 54, 1566-1568. DOI: 10.1016/j.tetlet.2013.01.039.
  • Serim, S.; Baer, P.; Verhelst, S. H. L. Mixed Alkyl Aryl Phosphonate Esters as Quenched Fluorescent Activity-based Probes for Serine Proteases. Org. Biomol. Chem. 2015, 13, 2293-2299. DOI: 10.1039/C4OB02444C.
  • Vassiliou, S.; Węglarz-Tomczak, E.; Berlicki, Ł.; Pawełczak, M.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Mucha, A. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases. J. Med. Chem. 2014, 57, 8140-8151. DOI: 10.1021/jm501071f.
  • Huber, T.; Manzenrieder, F.; Kuttruff, C. A.; Dorner-Ciossek, C.; Kessler, H. Prolonged Stability by Cyclization: Macrocyclic Phosphino Dipeptide Isostere Inhibitors of β-Secretase (BACE1). Bioorg. Med. Chem. Lett. 2009, 19, 4427-4431. DOI: 10.1016/j.bmcl.2009.05.053.
  • Matziari, M.; Yiotakis, A. Shortcut to Fmoc-Protected Phosphinic Pseudodipeptidic Blocks. Org. Lett. 2005, 7, 4049-4052. DOI: 10.1021/ol051622y.
  • Chen, S.; Cowark, J. K. A General Method for the Synthesis of N-protected α-Aminoalkylphosphinic Acids. Tetrahedron Lett. 1996, 37, 4335-4338. DOI: 10.1016/0040-4039(96)00839-8.
  • Roos, G. H. P.; Balasubramaniam, S. Synthesis of α-Amino Phosphonates under Diastereocontrol by Imidazolidin-2-one Auxiliaries. Synth. Commun. 1998, 28, 3877-3884. DOI: 10.1080/00397919808004941.
  • Yuan, C.; Wang, G. Studies on Organophosphorus Compounds 65, A Facile Synthetic Route to Phosphonopeptides. Phosphorus, Sulfur, Silicon Relat. Elem. 1992, 71, 207-212. DOI: 10.1080/10426509208034513.
  • Rozhko, L. F.; Ragulun, V. V. α-Hydroxy-α-aminophosphinic Acids: I. Synthesis of a New Analog of Phenylglycine and Its Enantiomers. Russ. J. Gen. Chem. 2005, 75, 533-536. DOI: 10.1007/s11176-005-0267-1.
  • Kaboudin, B.; Afsharinezhad, M. B.; Yokomatsu, T. A Convenient and General Procedure for the Synthesis of α-Ureidophosphonates under Catalyst-free Conditions. Arkivoc. 2012, 4, 44-53. DOI: 10.3998/ark.5550190.0013.405.
  • Dai, Q.; Chen, R. Synthesis of Dialkyl α-(p-toluenesulfonureado) phosphonates and Their Quantitative Structure-anti-TMV Activity Relationship. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 122, 261-267. DOI: 10.1080/10426509708043515.
  • Kabachnik, M. I.; Medved, T. Y. New Synthesis of Aminophosphonic Acids. Dokl. Akad. Nauk SSSR. 1952, 83, 689-692.
  • Kaboudin, B.; Rahmani, A. Convenient Synthesis of 1-Aminoalkylphosphonates under Solvent-free Conditions. Org. Prep. Proced Int. 2004, 36, 82-86. DOI: 10.1080/00304940409355376.
  • Pawłowska, A.; Jean-Noel, V.; Virieux, D.; Pirat, J.-L.; Janiak, A.; Nowicki, M.; Hoffmann, M.; Pluskota-Karwatka, D. Perfluorophenyl Phosphonate Analogues of Aromatic Amino Acids: Synthesis, X-ray and DFT Studies. Tetrahedron. 2018, 74, 975-986. DOI: 10.1016/j.tet.2018.01.019.