Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 9
196
Views
6
CrossRef citations to date
0
Altmetric
Articles

B(C6F5)3 catalyzed synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions

, , &
Pages 1143-1152 | Received 16 Aug 2018, Accepted 17 Feb 2019, Published online: 02 Apr 2019

References

  • (a) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Multiple-Component Condensation Strategies for Combinatorial Library Synthesis. Acc. Chem. Res. 1996, 29, 123-131 DOI: 10.1021/ar9502083. (b) Terret, N. K.; Gardner, M.; Gordon, D. W.; Kobylecki, R. J.; Steel, J. Combinatorial Synthesis-the Design of Compound Libraries and Their Application to Drug Discovery. Tetrahedron 1995, 51, 8135-8173. DOI: 10.1016/0040-4020(95)00467-M. (c) Domling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17. DOI: 10.1021/cr0505728.
  • (a) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005. (b) Jiang, B.; Tu, S.-J.; Kaur, P.; Wever, W.; Li, G. Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines. J. Am. Chem. Soc. 2009, 131, 11660-11661. DOI: 10.1021/ja904011s.
  • El-Nagger, A. M.; Abdel-El-Salam, A. M.; Latif, M. S. A.; Ahmed, F. S. M. Synthesis of Some Biologically Active Visnagin-9-sulfonylamino Acid and Dipeptide Derivatives. Pol. J. Chem. 1981, 55, 793-797.
  • Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and Pharmacological Activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide Derivatives. Eur. J. Med. Chem. 1993, 28, 517-520. DOI: 10.1016/0223-5234(93)90020-F.
  • Shestopalov, A. M.; Litvinov, Y. M.; Rodinovskaya, L. A.; Malyshev, O. R.; Semenova, M. N.; Semenov, V. V. Polyalkoxy Substituted 4H-Chromenes: Synthesis by Domino Reaction and Anticancer Activity. ACS Comb. Sci. 2012, 14, 484-490. DOI: 10.1021/co300062e.
  • Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-Chromenes. Eur. J. Med. Chem. 2009, 44, 3805-3809. DOI: 10.1016/j.ejmech.2009.04.017.
  • Balalaie, S.; Sheikh-Ahmadi, M.; Bararjanian, M. Tetra-Methyl Ammonium Hydroxide: An Efficient and Versatile Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives in Aqueous Media. Catal. Commun. 2007, 8, 1724-1728. DOI: 10.1016/j.catcom.2007.01.034.
  • Konkoy, C. S.; Fick, D. B.; Cai, S. X.; Lan, N. C.; Keana, J. F. W. PCT Int Appl WO 0075123, 2000.
  • (a) Koba, Y.; Feroza, B.; Fujio, Y.; Ueda, S. Preparation of Koji from Corn Hulls for Alcoholic Fermentation without Cooking. J. Ferment. Technol 1986, 64, 175-178 DOI: 10.1016/0385-6380(86)90013-0. (b) Noh, J. M.; Kwak, S. Y.; Kim, D. H.; Lee, Y. S. Kojic Acid-Tripeptide Amide as a New Tyrosinase Inhibitor. Biopolymers 2007, 88, 300-307. DOI: 10.1002/bip.20670. (c) Chang, T. S. An Updated Review of Tyrosinase Inhibitors. IJMS 2009, 10, 2440-2475. DOI: 10.3390/ijms10062440.
  • Chen, J. S.; Wei, C. I.; Rolle, R. S.; Otwell, W. S.; Balaban, M. D.; Marshall, M. R. Inhibitory Effect of Kojic Acid on Some Plant and Crustacean Polyphenol Oxidases. J. Agric. Food Chem. 1991, 39, 1396-1401. DOI: 10.1021/jf00008a008.
  • Uher, M.; Konecny, V.; Rajniakova, O. Synthesis of 5-hydroxy-2-hydroxymethyl-4h-pyran-4-one Derivatives with Pesticide Activity. Chem. Zvesti 1994, 48, 282-284.
  • Veverka, M. Synthesis of Some Biologically Active Derivatives of 2-Hydroxymethyl-5-hydroxy-4H-pyran-4-One. Chem. Pap. 1992, 46, 206-210. DOI: 463a206.pdf
  • (a) Wolf, P. A.; Westveer, W. M. The Antimicrobial Activity of Several Substituted Pyrones. Arch. Biochem. 1950, 28, 201-206. (b) Kayahara, H.; Shibata, N.; Tadasa, K.; Maeda, H.; Kotani, T.; Ichimoto, I. Amino Acid and Peptide Derivatives of Kojic Acid and Their Antifungal Properties. Agric. Biol. Chem. 1990, 54, 2441-2442. DOI: 10.1080/00021369.1990.10870342.
  • (a) Emami, S.; Hosseinimehr, S. J.; Taghdisi, S. M.; Akhlaghpoor, S. Kojic Acid and Its Manganese and Zinc Complexes as Potential Radioprotective Agents. Bioorg. Med. Chem. Lett. 2007, 17, 45-48 DOI: 10.1016/j.bmcl.2006.09.097. (b) Yang, C. T.; Sreerama, S. G.; Hsieh, W. Y.; Liu, S. Synthesis and Characterization of a Novel Macrocyclic Chelator with 3-Hydroxy-4-Pyrone Chelating Arms and Its Complexes with Medicinally Important Metals. Inorg. Chem. 2008, 47, 2719-2727. DOI: 10.1021/ic7022506.
  • (a) Baláž, Š.; Uher, M.; Brtko, J.; Veverka, M.; Bransová, J.; Dobias, J.; Pódová, M.; Buchvald, J. Relationship between Antifungal Activity and Hydrophobicity of Kojic Acid Derivatives. Folia Microbiol 1993, 38, 387-391. DOI: 10.1007/BF02898762. (b) Uher, M.; Čižárik, J. Koic Acid Derivates with Antifungal Effect. Farm. Obz. 2001, 01, 46-48. DOI: 10.1007/BF02898762.
  • Novotný, L.; Rauko, P.; Abdel-Hamid, M.; Váchalková, A. Kojic Acid-a New Leading Molecule for a Preparation of Compounds with an Anti-Neoplastic Potential. Neoplasma 1999, 46, 89-92. DOI: 10.1002/chin.199942297.
  • Fickova, M.; Pravdova, E.; Rondhal, L.; Uher, M.; Brtko, J. In Vitro Antiproliferative and Cytotoxic Activities of Novel Kojic Acid Derivatives: 5‐benzyloxy‐2‐selenocyanatomethyl‐ and 5‐methoxy‐2‐selenocyanatomethyl‐4‐Pyranone. J. Appl. Toxicol. 2008, 28, 554-559. DOI: 10.1002/jat.1300.
  • Tanaka, R.; Tsujii, H.; Yamada, T.; Kajimoto, T.; Amano, F.; Hasegawa, J.; Hamashima, Y.; Node, M.; Katoh, K.; Takebe, Y. Novel 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2)-Curcumin, Kojic Acid, Quercetin, and Baicalein Conjugates as HIV Agents. Bioorg. Med. Chem. 2009, 17, 5238-5246. DOI: 10.1016/j.bmc.2009.05.049.
  • Aytemir, M. D.; Özçelik, B. A Study of Cytotoxicity of Novel Chlorokojic Acid Derivatives with Their Antimicrobial and Antiviral Activities. Eur. J. Med. Chem. 2010, 45, 4089-4095. DOI: 10.1016/j.ejmech.2010.05.069.
  • Aytemir, M. D.; Septioğlu, E.; Caliş, U. Synthesis and Anticonvulsant Activity of New Kojic Acid Derivatives. Arzneimittelforschung. 2010, 60, 22. DOI: 10.1055/s-0031-1296244.
  • Rho, H. S.; Ahn, S. M.; Yoo, D. S.; Kim, M. K.; Cho, D. H.; Cho, J. Y. Kojyl Thioether Derivatives Having Both Tyrosinase Inhibitory and Anti-Inflammatory Properties. Bioorg. Med. Chem. Lett. 2010, 20, 6569-6571. DOI: 10.1016/j.bmcl.2010.09.042.
  • Abe, Y.; Takahashi, Y. Anti-oxidative Effect of Kojic Acid Derivatives. J. Jpn. Oil Chem. Soc. 1970, 19, 23-27. DOI: 10.5650/jos1956.19.23.
  • Kotani, T.; Ichimoto, I.; Tatsumi, C. Screening-Test for Kojic Acid and Its Related Compounds on Their Antibacterial Activity. J. Ferment. Tech. 1973, 51, 66-70.
  • Reddy, B. V.; Reddy, M. R.; Madan, C.; Kumar, K. P.; Rao, M. S. Indium(III) Chloride Catalyzed Three-Component Coupling Reaction: A Novel Synthesis of 2-substituted Aryl(indolyl)kojic Acid Derivatives as Potent Antifungal and Antibacterial Agents. Bioorg. Med. Chem. Lett. 2010, 20, 7507-7511. DOI: 10.1016/j.bmcl.2010.10.003.
  • Kim, K. D.; Song, M. H.; Yum, E. K.; Jeon, O. S.; Ju, Y. W.; Chang, M. S. 2,4-Dihydroxycinnamic Esters as Skin Depigmenting Agents. Bull. Korean Chem. Soc. 2009, 30, 1619-1621. DOI: 10.5012/bkcs.2009.30.7.1619.
  • Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-Chromenes. J. Med. Chem. 2009, 44, 3805-3809. DOI: 10.1016/j.ejmech.2009.04.017.
  • (a) Xiong, X.; Pirrung, M. C. Modular Synthesis of Candidate Indole-Based Insulin Mimics by Claisen Rearrangement. Org. Lett. 2008, 10, 1151-1154 DOI: 10.1021/ol800058d. (b) Fox, R. C.; Taylor, P. D. The Synthesis and Confirmatory Structural Characterisation of Tetradentate Chelators Based on Kojic Acid. Synth. Commun. 1998, 28, 1575-1583. DOI: 10.1080/00397919808006861. (c) Shestopalov, A. A.; Rodinovskaya, L. A.; Shestopalov, A. M.; Litvinov, V. P. One-step Synthesis of Substituted 4,8-dihydropyrano[3,2-b]pyran-4-Ones. Russ. Chem. Bull. 2004, 53, 724-725. DOI: 10.1023/B:RUCB.000.
  • Reddy, B. V.; Reddy, M. R.; Narasimhulu, G.; Yadav, J. S. InCl3-catalyzed Three-component Reaction: A Novel Synthesis of Dihydropyrano[3,2-b]chromenediones under Solvent-Free Conditions. Tetrahedron Lett. 2010, 51, 5677-5679. DOI: 10.1016/j.tetlet.2010.08.044.
  • Wei, L. L.; Li, Q. W.; Fu, L. Y. Alum-Catalyzed One-Pot Synthesis of Dihydropyrano[3,2-b]Chromenediones. J. Braz. Chem. Soc. 2011, 22, 2202-2205. DOI: 10.1590/S0103-50532011001100025.
  • Zhang, C.; Qu, Y. CeCl3⋅7H2O/SiO2 as an Efficient and Recyclable Catalyst for the Synthesis of Dihydropyrano[3,2-b]Chromenediones. J. Chem. 2013, 2013, 1-5. DOI: 10.1155/2013/682973.
  • Wei, L. L.; Liang, J.; Wang, T.; Yang, Y. FeCl3-SiO2 as Heterogeneous Catalysts for the Preparation of Dihydropyrano[3,2-b]Chromenediones. Collect. Czech. Chem. Commun. 2011, 76, 1791-1797. DOI: 10.1135/cccc2011108.
  • Pourshahrestani, S.; Baltork, I.; Moghadam, M.; Mirkhani, V. Bismuth Triflate, Bi(OTf)3, as an Efficient and Reusable Catalyst for Synthesis of Dihydropyrano[3,2-b]Chromenediones. J. Iran. Chem. Soc. 2015, 12(4), 573-580. DOI: 10.1007/s13738-014-05147.
  • Kataev, E. A.; Ramana Reddy, M.; Niranjan Reddy, G.; Reddy, V. H.; Suresh Reddy, C.; Subba Reddy, B. V. Supramolecular Catalysis by β-Cyclodextrin for the Synthesis of Kojic Acid Derivatives in Water. New J. Chem. 2016, 40, 1693-1697. DOI: 10.1039/C5NJ01902H.
  • Chereddy, S. S.; Nemallapudi, B. R.; Balam, S. K.; Soora Harinath, J. P.; Chinthaparthi, R. R.; Cirandur, S. R. Synthesis and Bioassay of Dihydropyrano[3,2‐b]Chromenediones. J. Heterocyclic Chem. 2016, 53, 493-498. DOI: 10.1002/jhet.2289.
  • Estakhari, E.; Esfaam, M.; Mirkhani, V.; Baltork, I.; Shahram, T.; Moghahaani, M. Chloroaluminate Ionic Liquid‐Modified Silica‐Coated Magnetic Nanoparticles: Efficient and Reusable Catalyst for Selective Synthesis of Mono‐ and Bis‐dihydropyrano[3,2‐b]Chromenediones. Appl. Organometal. Chem. 2017, 31, e3799. DOI: 10.1002/aoc.3799.
  • (a) Blackwell, J. M.; Piers, W. E.; Parvez, M. Mechanistic Studies on Selectivity in the B(C6F5)3-Catalyzed Allylstannation of Aldehydes:  Is Hypercoordination at Boron Responsible? Org. Lett. 2000, 2, 695-698 DOI: 10.1021/ol0000105. (b) Shchepin, R.; Xu, C.; Dussault, P. B(C6F5)3-Promoted Tandem Silylation and Intramolecular Hydrosilylation: Diastereoselective Synthesis of Oxasilinanes and Oxasilepanes. Org. Lett. 2010, 12, 4772-4775. DOI: 10.1021/ol1018757. (c) Thirupathi, P.; Neupane, L. N.; Lee, K.-H. Tris(pentafluorophenyl)borane [B(C6F5)3]-Catalyzed Friedel-Crafts Reactions of Activated Arenes and Heteroarenes with α-Amidosulfones: The Synthesis of Unsymmetrical Triarylmethanes. Tetrahedron 2011, 67, 7301-7310. DOI: 10.1016/j.tet.2011.07.041. (d) Chandrasekhar, S.; Chandrasekhar, G.; Reddy, M. S.; Srihari, P. Regioselective Organocatalysis: A Theoretical Prediction of the Selective Rate Acceleration of the SN2 Reaction between an Acetate Ion and Primary Alkyl Chlorides in DMSO Solution. Org. Biomol. Chem 2006, 4, 1650-1652. DOI: 10.1039/B601179A. (e) Yaragorla, S.; Singh, G.; Saini, P.; Reddy, M. Microwave Assisted, Ca(II)-Catalyzed Ritter Reaction for the Green Synthesis of Amides. Tetrahedron Lett. 2014, 55, 4657-4660. DOI: 10.1016/j.tetlet.2014.06.068. (f) Srihari, P.; Yaragorla, S.; Basu, D.; Chandrasekhar, S. Tris(pentafluorophenyl)borane-Catalyzed Synthesis of N-Benzyl Pyrrolidines. Synthesis 2006, 2006, 2646-2648. DOI: 10.1055/s-2006-942501. (g) Melen, R. L. Applications of Pentafluorophenyl Boron Reagents in the Synthesis of Heterocyclic and Aromatic Compounds. Chem. Comm. 2014, 50, 1161-1174. DOI: 10.1039/C3CC48036D. (h) Reddy, C. R.; Rajesh, G.; Balaji, S. V.; Chethan, N. Tris(pentafluorophenyl)borane: A Mild and Efficient Catalyst for the Chemoselective Tritylation of Alcohols. Tetrahedron Lett. 2008, 49, 970-973. DOI: 10.1016/j.tetlet.2007.12.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.