Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 17
757
Views
14
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Ligand-supported palladium-catalyzed cross-coupling reactions of (hetero) aryl chlorides

&
Pages 2117-2146 | Received 11 Dec 2018, Published online: 30 May 2019

References

  • Sawoo, S.; Srimani, D.; Dutta, P.; Lahiri, R.; Sarkar, A. Size controlled synthesis of Pd nanoparticles in water and their catalytic application in C–C coupling reactions. Tetrahedron 2009, 65, 4367. DOI: 10.1016/j.tet.2009.03.062.
  • Singh, B. K.; Kaval, N.; Tomar, S.; Van der Eycken, E.; Parmer, V. S. Transition metal-catalyzed carbon–carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org. Process Res. Dev. 2008, 12, 468. DOI: 10.1021/op800047f.
  • Ruan, J.; Shearer, L.; Mo, J.; Basca, J.; Zanotti-Gerosa, A.; Hancock, F.; Wu, X.; Kiao, J. [2.2]Paracyclophane-based monophosphine ligand for palladium-catalyzed cross-coupling reactions of aryl chlorides. Org. Bio. Chem. 2009, 7, 3242. DOI: 10.1039/b906139h.
  • Ei-Ichi Negishi, A. Magical power of transition metals: past, present, and future (nobel lecture). Chem. Int. Ed. 2011, 50, 6743. DOI: 10.1002/anie.201101380.
  • Han, F. –S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270. DOI: 10.1039/c3cs35521g.
  • (a) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki–Miyaura and Buchwald–Hartwig reactions. J. Am. Chem. Soc. 2006, 128, 4101–4111. DOI: 10.1021/ja057704z; (b) Duc, G. L.; Meiries, S.; Nolan, S. P. Effect of electronic enrichment of NHCs on the catalytic activity of [Pd(NHC)(acac)Cl] in Buchwald–Hartwig coupling. Organometallics 2013, 32, 7547. DOI: 10.1021/ja057704z.
  • Shaughnessy, K. H. Metal-Catalysed Reaction in Water, 1st Edn.; Dixnent P. H., Cadierno V., Eds.; Wiley-VCH Verlag GmbH & Co KGaA: Wenheim, 2013.
  • Palladium-catalyzed cross couplings in organic synthesis (Scientific background on the Nobel prize in chemistry 2010. Royal Sweden Academy of Sciences, 6th Oct 2010. [email protected]. http://kva.se.
  • Craige, G. B. Copper Catalyzed Cross-Coupling Reactions: The Formation of Carbon–Carbon and Carbon–Sulfur Bonds. Ph.D. Dissertation, University of Massachusetts, Amherst, May, 2005.
  • Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th Edition; John Wiley & Sons Ltd: UK, 2010; pp 65.
  • Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2460. DOI: 10.1021/cr00039a007.
  • Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl. 2012, 51, 5062–5082. DOI: 10.1002/anie.201107017.
  • Li, H.; Johansson Seechurn, C. C. C.; Colacot, T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 nobel prize. ACS Catal. 2012, 2, 1147–1164. DOI: 10.1021/cs300082f.
  • Bernard, C. Palladium-catalysed C–C coupling: then and now. Platinum Metals Rev. 2008, 52, 38. DOI: 10.1595/147106708X256634.
  • Littke, A. F.; Fu, G. C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed. 2002, 41, 4176–4177. DOI: 10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U.
  • Schlummer, B.; Scholz, U. Palladium-catalyzed C–N and C–O coupling–a practical guide from an industrial vantage point. Adv. Synth. Catal. 2004, 346, 1607. DOI: 10.1002/adsc.200404216
  • Huser, M.; Youinou, M. -T.; Osborn, J. A. Chlorocarbon activation: catalytic carbonylation of dichloromethane and chlorobenzene. Angew. Chem. Int. Ed. Engl. 1989, 28, 1386–1388. DOI: 10.1002/anie.198913861.
  • Leadbeater, N. E. Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration. Chem. Commun. 2005, 0, 2881. DOI: 10.1039/b500952a.
  • Fairlamb, I. J. S. Regioselective (site-selective) functionalisation of unsaturated halogenated nitrogen, oxygen and sulfur heterocycles by Pd-catalysed cross-couplings and direct arylation processes. Chem. Soc. Rev. 2007, 36, 1036. DOI: 10.1039/b611177g.
  • Shi, S.; Zhang, Y. Silica-assisted Suzuki–Miyaura reactions of heteroaryl bromides in aqueous media. Green Chem. 2008, 10, 868. DOI: 10.1039/b803917h.
  • Aderson, K. W.; Buchwald, S. L. General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew. Chem. Int. Ed. 2005, 44, 6174. DOI: 10.1002/anie.200502017I.
  • Billingsley, K.; Buchwald, S. L. Highly efficient monophosphine-based catalyst for the Palladium-catalyzed Suzuki–Miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. J. Am. Chem. Soc. 2007, 129, 3358. DOI: 10.1021/ja068577p.
  • Lee, D.-H.; Jung, J.-Y.; Jin, M.-J. Highly active and recyclable silica gel-supported palladium catalyst for mild cross-coupling reactions of unactivated heteroaryl chlorides. Green Chem. 2010, 12, 2024. DOI: 10.1039/c0gc00251h.
  • Ghosh, R.; Adarsh, N. N.; Sarkar, A. A Novel, Air-Stable Phosphine Ligand for the Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of Chloro Arenes. J. Org. Chem. 2010, 75, 5320. DOI: 10.1021/jo100643j.
  • (a) Littke, A. F.; Fu, G. C. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids. Angew. Chem. Int. Ed. 1998, 38, 3387. DOI: 10.1002/(SICI)1521-3773(19981231)37:24C3387::AID-ANIE3387>3.0.CO:2-P; (b) Fu, G. C. The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. Acc. Chem. Res 2008, 41, 1555–1564. DOI: 10.1021/ar800148f.
  • (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. Highly active palladium catalysts for Suzuki coupling reactions. J. Am. Chem. Soc., 1999, 121, 9550. DOI: 10.1021/ja992130h; (b) Wolfe, J. P.; Buchwald, S. L. A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides. Angew. Chem. Int. Ed. 1999, 38, 3387. DOI: 10.10021/(SICI)1521-3773(19990816)38:16<2413::AID-ANIE2413>3.0.CO;2-H.
  • Surry, D. S.; Buchwald, S. L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Chem Sci. 2011, 2, 27–50. DOI: 10.1039/C0SC00331J
  • Kawatsura, M.; Hartwig, J. F. Simple, highly active palladium catalysts for ketone and malonate arylation: Dissecting the importance of chelation and steric hindrance. J. Am. Chem. Soc. 1999, 121, 1473. DOI: 10.1021/ja983378u.
  • Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond-forming cross-couplings. J. Org. Chem. 2002, 67, 5553. DOI: 10.1021/jo025732j.
  • Vo, G. D.; Hartwig, J. F. Palladium-catalyzed α-arylation of aldehydes with bromo- and chloroarenes catalyzed by [Pd(allyl)Cl]2and DPPF or Q-phos. Angew. Chem. Int. Ed. Engl. 2008, 47, 2127. DOI: 10.1002/anie.200705357.
  • Sergeev, A. G.; Spannenberg, A.; Beller, M. Palladium-catalyzed formylation of aryl bromides: elucidation of the catalytic cycle of an industrially applied coupling reaction. J. Am. Chem. Soc. 2008, 130, 15549. DOI: 10.1021/ja804997z.
  • Marion, N.; Nolan, S. P. Well-defined N-heterocyclic carbenes–palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res. 2008, 41, 1440. DOI: 10.1021/ar800020y.
  • (a) Bohm, V. P. W.; Gstottmeyer, C. W. K.; Weskamp, T.; Herrmann, W. A. N-Heterocyclic carbenes Part 26. N-Heterocyclic carbene complexes of palladium(0): synthesis and application in the Suzuki cross-coupling reaction. Organomet. Chem. 2000, 595, 186. DOI: 10.1016/S0022-328X(99)00590-2; (b) Herrmann, W. A. N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. DOI: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
  • Wurtz, S.; Glorius, F. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions. Acc. Chem. Res. 2008, 41, 1523–1533. DOI: 10.1021/ar8000876.
  • Esposito, O.; Gois, P. M. P.; de Lewis, A. K.; Caddick, S.; Cloke, F. G. N.; Hitchcock, P. B. Alkylpalladium n-heterocyclic carbene complexes: synthesis, reactivity, and catalytic properties. Organometallics 2008, 27, 6411. DOI: 10.1021/om800455h.
  • Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534–1544. DOI: 10.1021/ar800098p.
  • Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist's perspective. Angew. Chem. Int. Ed. Engl. 2007, 46, 2768–2813. DOI: 10.1002/anie.200601663.
  • Zapf, A.; Beller, M. The development of efficient catalysts for palladium-catalyzed coupling reactions of aryl halides. Chem. Commun. 2005, 0, 431–440. DOI: 10.1039/b410937f.
  • Debono, N.; Labande, A.; Manoury, E.; Daran, J.-C.; Poli, R.. Palladium complexes of planar chiral ferrocenyl phosphine-nhc ligands: new catalysts for the asymmetric Suzuki–Miyaura reaction. Organometallics 2010, 29, 1879–1882. DOI: 10:1021/om100125k
  • Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Recent advances in the Suzuki -Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chemistry 2019, 21, 381–405. DOI: 10.1039/C8GC02860E.
  • Kotha, S.; Lahiri, K.; Kashinah, D. Recent Applications of the Suzuki–Miyaura Cross-Coupling Reaction in Organic Synthesis. Tetrahedron 2002, 58, 9637–9639. DOI: 10.1016/S0040-4020(02)01188-2.
  • Zhao, D.; You, J.; Hu, C. Recent progress in coupling of two heteroarenes. Chemistry 2011, 17, 5466. DOI: 10.1002/chem.201003039.
  • Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685–4696. DOI: 10.1021/ja042491j.
  • Bellina, F.; Carpita, A.; Rossi, R. Palladium catalysts for the Suzuki cross-coupling reaction: an overview of recent advances. Synthesis 2004, 15, 2419–2440. DOI: 10.1055/s-2004-831223.
  • Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 2002, 58, 9633–9695. DOI: 10.1016/S0040-4020(02)01188-2.
  • Martin, R.; Buchwald, S. L. Palladium-catalyzed Suzuki-Miyaura cross-couplin reactions employing dialkylbiaryl phosohine ligands. Acc. Chem. Res., 2008, 41, 1461–1473. DOI: 10.1021/ar8000365.
  • Suzuki, A. Organoborates in new synthetic reactions. Acc. Chem. Res. 1982, 15, 178. DOI: 10.1021/ar00078a003.
  • Martin, A. R.; Yang, Y.; Spinelli, D.; Frenna, V.; Consiglio, G.; Chanon, M.; Striley, C.; Weidlein, J.; Nasiri, A.; Okada, Y. Palladium-Catalyzed Cross-Coupling Reactions of Organoboronic Acids with Organic Electrophiles. Acta Chem. Scand. 1993, 47, 221. DOI: 10.3891/acta.chem.scand.47-0221.
  • Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457. DOI: 10.1021/cr00039a007.
  • Miyaura, N. Advances in Metal-Organic Chemistry, Vol. 6; Libeskind, L. S., Ed.; JAI: London, 1998; pp 187–243.
  • Suzuki, A. Organoboranes for Synthesis. In ACS Symposium Series 783; Ramachandran, P. V., Brown, H. C. Eds.; American Chemical Society: Washington, D. C., 2001; pp 80–93.
  • Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem. 1999, 576, 147. DOI: 10.1016/S0022-328X(98)01055-9.
  • Bastug, G.; Nolan, S. P. [Pd(IPr*OMe)(cin)Cl] (cin = Cinnamyl): a versatile catalyst for C–N and C–C bond formation. Organomet. 2014, 33, 1253. DOI: 10.1021/om500026s.
  • Tsuji, J. Palladium Reagents and Catalysts, New Perspective for 21st Century. John Wiley & Sons Ltd.: England, 2004; pp 289–290.
  • Peh, G.-R.; Kantchev, E. A. B.; Er, J. –C.; Ying, J. Y. Rational exploration of n-heterocyclic carbene (NHC) palladacycle diversity: a highly active and versatile precatalyst for Suzuki–Miyaura coupling reactions of deactivated aryl and alkyl substrates. Chemistry-A European Journal, 2010, 16, 4010. DOI: 10.1002/chem.200902842.
  • Old, D. W.; Wolfe, J. P.; Buchwald, S. L. A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J. Am. Chem. Soc. 1998, 120. DOI: 10.1021/ja982250+
  • Anderson, K. W.; Buchwald, S. L. General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew. Chem Int. Ed. 2005, 44, 6177. DOI: 10.1002/anie.200502017I.
  • Onoabedje, E. A.; Uchechukwu, U. C.; Knight, D. W.; Sarker, A. Fuctionalization of linear and angular phenothiazine and phenoxazine ring systems via Pd(0)/XPhos mediated Suzuki-Miyaura cross-coupling reactions. J. Heterocyclic Chem. 2016, 53, 1787–1794. DOI: 10.1002/jhet.2485.
  • Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. An efficient method for sterically demanding Suzuki–Miyaura coupling reactions. Chem. Eur. J. 2013, 19, 2261–2265. DOI: 10.1002/chem.201203898.
  • Liu, S.-Y.; Choi, M. J.; Fu, G. C. A surprisingly mild and versatile method for palladium-catalyzed Suzuki cross-couplings of aryl chlorides in the presence of a triarylphosphine. Chem. Commun. 2001, 2408–2409. DOI: 10.1039/b107888g.
  • Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond-forming cross-couplings. J. Org. Chem. 2002, 67, 5566. DOI:10.1021/jo025732j.
  • Zim, D.; Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. Sulfur-containing palladacycles: efficient phosphine-free catalyst precursors for the Suzuki cross-coupling reaction at room temperature. Org. Lett. 2000, 2, 2881–2884. DOI: 10.1021/ol0063048.
  • Baillie, C.; Zhang, L.; Xiao, J. Ferrocenyl monophosphine ligands: synthesis and applications in the Suzuki-Miyaura coupling of aryl chlorides. J. Org. Chem. 2004, 69, 7779–7782. DOI: 10.1021/jo048963u.
  • Kwog, F. Y.; Chan, K. S.; Yeung, C. H.; Chan, A. S. C. An active ferrocenyl triarylphosphine for palladium-catalyzed Suzuki–Miyaura cross-coupling of aryl halides. Chem. Commun. 2004, 0, 2336–2337. DOI: 10.1039/B407661C.
  • Ohta, H.; Tokunaga, M.; Obora, Y.; Iwai, T.; Iwasawa, T.; Fujihara, T.; Tsuji, Y. A bowl-shaped phosphine as a ligand in palladium-catalyzed Suzuki–Miyaura coupling of aryl chlorides: effect of the depth of the bowl. Org. Lett. 2007, 9, 89–92. DOI: 10.1021/ol0626138.
  • Fleckenstein, C. A.; Plenio, H. Efficient Suzuki-Miyaura Coupling of (Hetero)aryl Chlorides with Thiophene- and Furanboronic Acids in Aqueous n-Butanol. J. Org. Chem. 2008, 73, 3236–3244. DOI: 10.1021/jo8001886.
  • Pschierer, J.; Plenio, H. Suzuki-Miyaura and Sonogashira coupling of 6-chloropurines and -nucleosides in water. Org. Lett. 2009, 11, 2551–2554. DOI: 10.1021/ol9007475.
  • To, S. C.; Kwong, F. Y. Highly efficient carbazolyl-derived phosphine ligands: application to sterically hindered biaryl couplings. Chem. Commun. (Camb.) 2011, 47, 5079–5081. DOI: 10.1039/c1cc10708a.
  • Mao, S.-L.; Sun, Y.; Yu, G.-A.; Zhao, C.; Han, Z.-J.; Yuan, J.; Zhu, X.; Yang, Q.; Liu, S.-H. A highly active catalytic system for Suzuki–Miyaura cross-coupling reactions of aryl and heteroaryl chlorides in water. Org. Biomol. Chem. 2012, 10, 9410–9417. DOI: 10.1039/c2ob26463c.
  • Yasar, S.; Suzan, S.; Ozdemir, I. New bisbenzimidazolin-2-ylidene salts as N-heterocyclic dicarbene precursors: synthesis, characterization, and involvement in Palladium-catalyzed Suzuki reactions. Heteroatom 2014, 24, 157–162. DOI: 10.1002/hc.21148.
  • An der Heiden, M. R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H. C. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling. Chem Eur. J 2008, 14, 2857–2866. DOI: 10.1002/chem.200701418.
  • Kollhofer, A.; Pullmann, T.; Plenio, H. Ein leistungsfhiger Katalysator fur die Sonogashira-Kupplung von Chloraromaten. Angew. Chem. 2003, 115, 1086–1089. DOI: 10.1002/ange.200390248.
  • Data, A.; Plenio, H. Nonpolar biphasic catalysis: Sonogashira and Suzuki coupling of aryl bromides and chlorides. Chem. Commun. 2003, 0, 1504–1505. DOI: 10.1039/b303602b.
  • Ljungdahl, T.; Pettersson, K.; Albinsson, B.; Martensson, J. Solvent and base dependence of copper-free palladium-catalyzed cross-couplings between terminal alkynes and arylic iodides: development of efficient conditions for the construction of gold(iii)/free-base porphyrin dimers. J. Org. Chem. 2006, 71, 1677–1687. DOI: 10.1021/jo052423v.
  • Thathagar, M. B.; Kooyman, P. J.; Boerleider, R.; Jansen, E.; Elsevier, C. J.; Rothenberg, G. Palladium nanoclusters in Sonogashira cross-coupling: a true catalytic species? Advance Synth. Catal. 2005, 347, 1965–1968. DOI: 10.1002/adsc.200505229.
  • Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. Self-assembly of supramolecular platinum complexes with bis-4-pyridyl cavitands. J. Org. Chem. 2006, 71, 4155–4163. DOI: 10.1021/jo060133o.
  • Vicennati, P.; Bensel, N.; Wagner, A.; Creminon, C.; Taran, F. Sandwich Immunoassay as a High-Throughput Screening Method for Cross-Coupling Reactions. Angew. Chem. 2005, 117, 7023–9190. DOI: 10.1002/ange.200501641.
  • Houk, R. J. T.; Anslyn, E. V. Luminescent assays for ketones and aldehydes employing catalytic signal amplification. New J. Chem. 2007, 31, 729–731. DOI: 10.1039/b616765a.
  • (a) Aufiero, M.; Proutiere, F.; Schoenebeck, F. Redox reactions in palladium catalysis: on the accelerating and/or inhibiting effects of copper and silver salt additives in crosscoupling chemistry involving electron-rich phosphine ligands. Angew. Chem. Int. Ed. 2012, 51, 7226. DOI: 10.1002/anie.201202504; (b) Chinchilla, R.; Najera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011, 40, 5084–5085. DOI: 10.1039/c1cs15071e.
  • Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes : catalytic substitutions of acetyleyic hydrogen with bromoalkene, iodoarenes, and bromopyridine. Tetrahedron Lett. 1975, 16, 4467–4470. DOI: 10.1016/S0040-4039(00)91094-3.
  • Wolfe, P.; Li, J. J. Palladium in Heterocyclic Chemistry (a Guide to the Synthetic Chemist); Elsevier: Oxford, UK, 2007; pp 14.
  • Gelman, D.; Buchwald, S. L. Efficient palladium-catalyzed coupling of aryl chlorides and tosylates with terminal alkynes: use of a copper cocatalyst inhibits the reaction. Angew. Chem. Int. Ed. Engl. 2003, 42, 5993–5996. DOI: 10.1002/anie.200353015.
  • (a) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Recyclable palladium-catalyzed Sonogashira–Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J. Mol. Catal. A: Chem. 2010, 321, 110–116. DOI: 10.1016/j.molcata.2010.02.010; (b) Sajith, A. M.; Muralidharan, A. Exploration of copper and amine-free Sonogashira cross coupling reactions of 2-halo-3-alkyl imidazo[4,5-b]pyridines using tetrabutyl ammonium acetate as an activator under microwave enhanced conditions. Tetrahedron Lett. 2012, 53, 5206–5210. DOI: 10.1016/j.tetlet.2012.07.028.
  • Panda, N.; Jena, A. K. Cu/Fe-catalyzed carbon-carbon and carbon-heteroatom cross-coupling reactions. Org. Chem. Curr. Res. 2015, 4, 1–3. DOI: 10.4172/2161-0401.1000130.
  • Chinchilla, R.; Najera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev. 2007, 107, 874–922. DOI: 10.1021/cr050992x.
  • Polsheltiwar, V.; Hesemann, P.; Moreau, J. J. E. Palladium containing nanostructured silica functionalized with pyridine sites: a versatile heterogeneous catalyst for Heck, Sonogashira, and cyanation reactions. Tetrahedron 2007, 63, 212–216. DOI: 10.1016/j.tet.2007.04.073.
  • Hajipour, A. R.; Nazemzadeh, S. H.; Mohammadsaleh, F. Choline chloride/CuCl as an effective homogeneous catalyst for palladium-free Sonogashira cross-coupling reactions. Tetrahedron Lett. 2014, 55, 654–656. DOI: 10.1016/j.tetlet.2013.11.105.
  • Bakherad, M. Recent progress and current applications of Sonogashira coupling reaction in water. Appl. Organometal. Chem. 2013, 27, 125–140. DOI: 10.1002/aoc.2931.
  • Plenio, H. Catalysts for the Sonogashira coupling–the crownless again shall be king. Angew. Chem. Int. Ed. Engl. 2008, 47, 6954. DOI: 10.1002/anie.200802270.
  • Farjadian, F.; Tamami, B. Poly(vinylpyridine)-Grafted Silica Containing Palladium or Nickel Nanoparticles as Heterogeneous Catalysts for the Sonogashira Coupling Reaction. Chempluschem 2014, 79, 1767. DOI: 10.1002/cplu.201402169.
  • Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.; Felpin, F.-X. Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in Suzuki, Heck, Sonogashira and Tsuji–Trost reactions. Adv. Synth. Catal. 2010, 352, 33–79. DOI: 10.1002/adsc.200900765.
  • (a) Mehta, V. P.; Van der Eycken, E. V. Microwave-assisted C–C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 2011, 40, 4925–4936. DOI: 10.1039/c1cs15094d; (b) Chang, W.; Shin, J.; Chae, G. H.; Jang, S. R.; Ahn, B. J. J. Microwave-assisted Sonogashira cross-coupling reaction catalyzed by Pd-MCM-41 under solvent-free conditions. Ind. Engr. Chem. 2013, 19, 739–743. Issue DOI: 10.1016/j.jiec.2012.11.002.
  • (a) Wurtz, S.; Glorous, F. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions. Acct. Chem. Res. 2008, 41, 1523–1533. (b) Schilz, M.; Plenio, H. J. Org. Chem 2012, 6, 2798–2809.
  • (a) Xu, K.; Yang, F.; Wu, Y. –J. Palladacycle-catalyzed decarboxylative coupling of alkynyl carboxylic acids with aryl chlorides under air. J. Org. Chem. 2013, 78, 4543. DOI: 10.1021/jo400574d; (b) Farina, V. High-turnover palladium catalysts in cross-coupling and Heck chemistry: a critical overview. Adv. Synth. Catal 2004, 346, 1553–1582. DOI: 10.1002/adsc.200404178
  • Anderson, K. W.; Buchwald, S. L. General catalysts for the Suzuki–Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew. Chem. Int. Ed. Engl. 2005, 44, 6173. DOI: 10.1002/anie.200502017.
  • Komaromi, A.; Novak, Z. Efficient copper-free Sonogashira coupling of aryl chlorides with palladium on charcoal. Chem. Comm. 2008, 0, 4968–4970. DOI: 10.1039/B810928A
  • He, T.; Wu, L. L.; Fu, X. L.; Fu, H. Y.; Chen, H.; Li, R. X. Copper and amine free Sonogashira cross-coupling reaction catalyzed by efficient diphosphane–palladium catalyst. Chinese Chem. Lett. 2011, 22, 1175–1178. DOI: 10.1016/j.cclet.2011.05.014.
  • Kollhofer, A.; Pullmann, T.; Plenio, H. A versatile catalyst for the Sonogashira coupling of aryl chlorides. Angew. Chem. Int. Ed. Engl. 2003, 42, 1056–1058. DOI: 10.1002/anie.200390273.
  • Remmele, H.; Kollhofer, A.; Plenio, H. Recyclable catalyst with cationic phase tags for the Sonogashira coupling of aryl bromides and aryl chlorides. Organomet 2003, 22, 4098–4103. DOI: 10.1021/om030450a.
  • Liang, Y.; Xie, Y.-X.; Li, J.-H. Modified palladium-catalyzed Sonogashira cross-coupling reactions under copper-, amine-, and solvent-free conditions. J. Org. Chem. 2006, 71, 379–381. DOI: 10.1021/jo051882t.
  • Yi, C.; Hua, R. Efficient copper-free PdCl2(PCy3)2-catalyzed sonogashira coupling of aryl chlorides with terminal alkynes. J. Org. Chem. 2006, 71, 2535–2537. DOI: 10.1021/jo0525175.
  • Huang, H.; Liu, H.; Jiang, H.; Chen, K. Rapid and efficient Pd-catalyzed Sonogashira coupling of aryl chlorides. J. Org. Chem. 2008, 73, 6037–6040. DOI: 10.1021/jo800994f.
  • Reddy, E. A.; Barange, D. K.; Islam, A.; Mukkanti, K.; Pal, M. Synthesis of 2-alkynylquinolines from 2-chloro and 2,4-dichloroquinoline via Pd/C-catalyzed coupling reaction in water. Tetrahedron 2008, 64, 7143–7150. DOI: 10.1016/j.tet.2008.05.097.
  • Reddy, E. A.; Islam, A.; Mukkanti, K.; Bandameedi, V.; Bhowmik, D. R.; Pal, M. Regioselective alkynylation followed by Suzuki coupling of 2,4-dichloroquinoline: synthesis of 2-alkynyl-4-arylquinolines. Beilstein. J. of Org. Chem. 2009, 2. DOI: 10.3762/bjoc.5.32.
  • Chandra, A.; Singh, B.; Khanna, R. S.; Singh, R. M. Copper-Free Palladium-Catalyzed Sonogashira Coupling-Annulation: Efficient One-Pot Synthesis of Functionalized Pyrano[4,3-b]quinolines from 2-Chloro-3-formylquinolines. J. Org. Chem. 2009, 74, 5664–5666. DOI: 10.1021/jo900606j.
  • Panda, B.; Sakar, T. K. Gold and palladium combined for the Sonogashira coupling of aryl and heteroaryl halides. Synthesis 2013, 45, 817–829. DOI: 10.1055/s-0032-1318119.
  • Torberg, C.; Huang, J.; Schulz, T.; Schaffner, B.; Zapf, A.; Spannenberg, A.; Borner, A.; Beller, M. Improved palladium-catalyzed Sonogashira coupling reactions of aryl chlorides. Chem Eur J. 2009, 15, 1329–1336. DOI: 10.1002/chem.200802444.
  • Feuerstein, M.; Doucet, H.; Santelli, M. Sonogashira cross-coupling reactions of aryl chlorides with alkynes catalysed by a tetraphosphine–palladium catalyst. Tetrahedron Lett. 2004, 45, 8443–8446. DOI: 10.1016/j.tetlet.2004.09.092.
  • Firouzabadi, H.; Iranpoor, N. N.; Gholinejad, M. Recyclable palladium-catalyzed Sonogashira–Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J. Molecular Catalysis A: Chem. 2010, 321, 110–116. DOI: 10.1016/j.molcata.2010.02.010.
  • Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D. R. M. Reactions of organic halides with R3 MMR3 compounds (M = Si, Ge, Sn) in the presence of tetrakis(triarylphos phine) palladium. J. Organomet. Chem. 1976, 117, C55–C75. DOI: 10.1016/S0022-328X(00)91902-8.
  • (a) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Reactions of allyltin compounds (III) allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(o). Chem. Lett. 1977, 6, 301–302. DOI: 10.1246/cl.1977.301; (b) Kosugi, M.; Shimizu, Y.; Migita, T. Alkylation, arylation, and vinylation of acyl chlorides by means of organotin compounds in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(o). Chem. Lett. 1977, 6, 1423–1424. DOI: 10.1246/cl.1977.1423; (c) Kosugi, M.; Shimizu, Y.; Migita, T. Reaction of allyltin compounds: II. Facile preparation of allyl ketones via allyltins. J. Organomet. Chem. 1977, 129, C36–C38. DOI: 10.1016/S0022-328X(00)92505-1
  • Milstein, D.; Stille, J. K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc. 1978, 100, 3636–3638. DOI: 10.1021/ja00479a077.
  • Seechurun, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5072. DOI: 10.1002/anie.201107017. [Epub 2012 May 9].
  • Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. J. Organomet. Chem. 2002, 653, 75. DOI: 10.1002/chin.200239248.
  • Espinel, P.; Echavarren, A. M. The mechanisms of the Stille reaction. Angew Chem. Int. Ed. 2004, 43, 4705–4706. DOI: 10.1002/anie.200300638.
  • Littke, A. F.; Fu, G. C. The first general method for Stille cross-couplings of aryl chlorides. Angew. Chem. Int. Ed. Engl. 1999, 38, 2411–2413.
  • Grasa, G. A.; Nolan, S. P. Palladium/imidazolium salt catalyzed coupling of aryl halides with hypervalent organostannates. Org. Lett. 2001, 3, 119–122. DOI: 10.1021/ol006827f.
  • Su, W.; Urgaonkar, S.; Mclaughlin, P. A.; Verkade, J. G. Pd2(dba)3/P(i-BuNCH2CH2)3N-Catalyzed Stille cross-coupling of aryl chlorides. Org. Lett. 2004, 6, 1421–1424. DOI: 10.1021/ol0495927.
  • Naber, J. R.; Buchwald, S. L. Palladium-catalyzed Stille cross-coupling reaction of aryl chlorides using a pre-milled palladium acetate and XPhos catalyst system. Adv. Synth. Catal. 2008, 350, 957–961. DOI: 10.1002/adsc.200800032.
  • Lundgren, R. J.; Sappong-Kumankumah, A.; Stradiotto, M. A highly versatile catalyst system for the cross-coupling of aryl chlorides and amines. Chemistry 2010, 16, 1983–1991. DOI: 10.1002/chem.200902316.
  • Olsen, E. P. K.; Arrechea, P. L.; Buchwald, S. L. Mechanistic insight leads to a ligand that facilitates the Pd catalyzed formation of 2-(hetero)arylaminooxazoles and 4-(hetero)arylaminothiazoles. Angew. Chem. 2017, 129, 10705–10708. DOI: 10.1002/ange.201705525.
  • Ruiz-Castillo, P.; Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649. DOI: 10.1021/acs.chemrev.6b00512.
  • Schlummer, B.; Scholz, U. Palladium-catalyzed C–N and C–O coupling–a practical guide from an industrial vantage point. Adv. Synth. Catal. 2004, 345, 1599–1626. DOI: 10.1002/adsc.200404216.
  • Crawford, S. M.; Lavery, C. B.; Stradiotto, M. BippyPhos: a single ligand with unprecedented scope in the Buchwald–Hartwig amination of (hetero)aryl chlorides. Chemistry 2013, 19, 16760. DOI: 10.1002/chem.201302453.
  • Christoffel, F.; Ward, T. R. Palladium-catalyzed Heck cross-coupling reactions in water: a comprehensive review. Catal. Lett. 2018, 148, 489–511. DOI: 10.1007/s10562-017-2285-0.
  • Littke, A. F.; Fu, G. C. Heck Reactions in the Presence of P(t-Bu)3: Expanded Scope and Heck Reactions in the Presence of P(t-Bu)3: Expanded Scope and Milder Reaction Conditions for the Coupling of Aryl Chlorides. Milder Reaction Conditions for the Coupling of Aryl Chlorides. J. Org. Chem. 1999, 64, 10–11. DOI: 10.1021/jo9820059.
  • Xu, H. –J.; Zhao, Y. –Q.; Zhou, X. –F. Palladium-catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J. Org. Chem. 2011, 76, 8036–8041. DOI: 10.1021/jo201196a.
  • Yi, C.; Hua, R. An efficient palladium-catalyzed Heck coupling of aryl chlorides with alkenes. Tetrahedron Lett. 2006, 47, 2573–2576. DOI: 10.1016/j.tetlet.2006.02.040.
  • Japtap, S. Heck reaction–state of the art. Catalysts 2017, 267, 1–53. DOI: 10.3390/catal7090267
  • Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Palladium-catalysed cross-coupling of organosilicon reagents. Chem. Soc. Rev. 2012, 41, 1845–1866. DOI: 10.1039/c1cs15181a.
  • Gouda, K. –I.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. Cross-coupling reactions of aryl chlorides with organochlorosilanes: highly effective methods for arylation or alkenylation of aryl chlorides. J. Org. Chem. 1996, 61, 7232–7233. DOI: S0022-3263(96)01117-6
  • Lee, H. M.; Nolan, S. P. Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a palladium/imidazolium chloride system. Org. Lett. 2000, 2, 2053–2055. DOI: 10.1021/ol005956t
  • Raders, S. M.; Kingston, J. V.; Verkade, J. G. Advantageous use of tBu2P-N=P(iBuNCH2CH2)3N in the Hiyama coupling of aryl bromides and chlorides. J. Org. Chem. 2010, 75, 1744–1747. DOI: 10.1021/jo902338w.
  • Molander, G. A.; Iannazzo, L. Palladium-catalyzed Hiyama cross-coupling of aryltrifluorosilanes with aryl and heteroaryl chlorides. J. Org. Chem. 2011, 76, 9182–9187. DOI: 10.1021/jo201840n.
  • Yuen, O. Y.; So, C. M.; Man, H. M.; Kwong, F. U. A general palladium-catalyzed hiyama cross-coupling reaction of aryl and heteroaryl chlorides. Chemistry 2016, 22, 6471–6476. DOI: 10.1002/chem.201600420.
  • Foubelo, F.; Najera, C. N.; Yus, M. The Hiyama cross-coupling reaction: new discoveries. Chem. Rec. 2016, 16, 2521–2533. DOI: 10.1002/tcr.201600063.
  • Li, J. J. Named Reactions: A Collection of Detailed Mechanisms and Synthetic Applications. 4th Edn; Springer-Verlag: Berlin Heidelberg, 2009; pp 325–526.
  • Ackermann, L.; Kapdi, A. R.; Schulzke, C. Air-stable secondary phosphine oxide or chloride (pre)ligands for cross-couplings of unactivated alkyl chlorides. Org. Lett. 2010, 12, 2298–2301. DOI: 10.1021/ol100658y.
  • Tsuji, J. Palladium Reagents and Catalysts (New Perspective for 21st Century). Chichester: John Wiley & Sons, Ltd. 2004; pp 327. ISBN: 978-0-470-85032-9.
  • Dai, C.; Fu, G. C. The first general method for palladium-catalyzed Negishi cross-coupling of aryl and vinyl chlorides: use of commercially available Pd(P(t-Bu)3)2as a catalyst. J. Am. Chem. Soc. 2001, 123, 2719–2724. DOI: 10.1021/ja003954y.
  • Milne, J. E.; Buchwald, S. L. An extremely active catalyst for the Negishi cross-coupling reaction. J. Am. Chem. Soc. 2004, 216, 13028–13032. DOI: 10.1021/ja0474493.
  • Walla, P.; Kappe, C. O. Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides. Chem. Comm. 2004, 35, 564–565. DOI: 10.1039/b313887a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.