Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 15
612
Views
34
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of silver nanoparticles using green alga (Chlorella vulgaris) and its application for synthesis of quinolines derivatives

, &
Pages 1926-1937 | Received 28 Nov 2018, Published online: 07 May 2019

References

  • Ramakrishna, M.; Babu, D. R.; Gengan, R. M.; Chandra, S.; Rao, G. N. Green Synthesis of Gold Nanoparticles Using Marine Algae and Evaluation of Their Catalytic Activity. J. Nanostruct. Chem. 2016, 6, 1–13. DOI: 10.1007/s40097-015-0173-y.
  • Dubey, S. P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus Aucuparia Leaf Extract in Development of Silver and Gold Nanocolloids. Colloids Surf. B Biointerfaces. 2010, 80, 26–33. DOI: 10.1016/j.colsurfb.2010.05.024.
  • Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. Identification of Active Biomolecules in the High-Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions. Small. 2007, 3, 672–682. DOI: 10.1002/smll.200600612.
  • Dhal, J. A.; Maddux, B. L.; Hutchison, J. E. Toward Greener Nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. DOI: 10.1021/cr050943k.
  • Das, S.; Marsili, E. A Green Chemical Approach for the Synthesis of Gold Nanoparticles: characterization and Mechanistic Aspect. Rev. Environ. Sci. Biotechnol. 2010, 9, 199–204. DOI: 10.1007/s11157-010-9188-5.
  • Dumur, F.; Guerlin, A.; Dumas, E.; Bertin, D.; Gigme, D.; Mayer, C. R. Controlled Spontaneous Generation of Gold Nanoparticles Assisted by Dual Reducing and Capping Agents. Gold Bull. 2011, 44, 119–137. DOI: 10.1007/s13404-011-0018-5.
  • Oza, G.; Pandey, S.; Mewada, A.; Kalita, G.; Sharon, M.; Phata, J.; Ambernath, W. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorellapyrenoidusa. Adv. Sci. Res 2012, 3, 1405–1412.
  • Rajesh Kumar, S.; Kanna, A. C.; Annadurai, G. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Bio. Sci. 2012, 3, 502–510.
  • Cunico, W.; Cechinel, C. A.; Bonacorso, H. G.; Martins, M. A.; Zanatta, N.; de Souza, M. V.; Freitas, I. O.; Soares, R. P.; Krettli, A. Antimalarial Activity of 4-(5-Trifluoromethyl-1H-Pyrazol-1-yl)-Chloroquine Analogues. Bioorg. Med. Chem. Lett. 2006, 16, 649–653. DOI: 10.1016/j.bmcl.2005.10.033.
  • Divo, A. A.; Sartorelli, A. C.; Patton, C. L.; Bia, F. J. Activity of Fluoroquinolone Antibiotics against Plasmodium falciparum in Vitro. Antimicrob. Agents Chemother. 1988, 32, 1182–1186. DOI: 10.1128/AAC.32.8.1182.
  • Gorlitzer, K.; Gabriel, B.; Jomaa, H. Wiesner, J. Thieno[3,2-c]chinolin-4-yl-amine – Synthese und Prüfung auf Wirksamkeit gegen Malaria. Malaria Pharmazie. 2006, 61, 278–284.
  • Khan, M. O. F.; Levi, M. S.; Tekwani, B. L.; Wilson, N. H.; Borne, R. F. Synthesis of Isoquinuclidine Analogs of Chloroquine: antimalarial and Antileishmanial Activity. Bioorg. Med. Chem. 2007, 15, 3919–3925. DOI: 10.1016/j.bmc.2006.11.024.
  • Kayirere, M.-G.; Mahamoud, A.; Chevalier, J.; Soyfer, J.-C.; Crémieux, A.; Barbe, J. Synthesis and Antibacterial Activity of New 4-Alkoxy, 4-Aminoalkyl and 4-Alkylthioquinoline Derivatives. Eur. J. Med. Chem. 1998, 33, 55–63. DOI: 10.1016/S0223-5234(99)80076-2.
  • Kidwai, M.; Bhushan, K.; Sapra, P.; Saxena, R.; Gupta, R. Alumina-Supported Synthesis of Antibacterial Quinolines Using Microwaves. Bioorg. Med. Chem. 2000, 8, 69–72. DOI: 10.1016/S0968-0896(99)00256-4.
  • Ryu, C. K.; Sun, Y. J.; Shim, J. Y.; You, H. J.; Choi, K. U.; Lee, H. Synthesis and Antifungal Activity of 6,7-Bis-[S-(Aryl)Thio]-5,8-Quinolinediones. Arch Pharm. Res. 2002, 25, 795–800. DOI: 10.1007/BF02976994.
  • Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal Properties of New Series of Quinoline Derivatives. Bioorg. Med. Chem. 2006, 14, 3592–3598. DOI: 10.1016/j.bmc.2006.01.016.
  • Desai, U.; Mitragotri, S.; Thopate, T.; Pore, D.; Wadgaonkarb, P. A highly efficient synthesis of trisubstituted quinolines using sodium hydrogensulfate on silica gel as a reusable catalyst. Arkivoc. 2006, 15, 198–204.
  • Elderfield, R. C.; Le Von, E. F. Synthesis of Potential Anticancer Agents. III. Nitrogen Mustards Derived from 8-Aminoquinolines 1-3. J. Org. Chem. 1960, 25, 1576–1583. DOI: 10.1021/jo01079a027.
  • Denny, W. A.; Wilson, W. R.; Ware, D. C.; Atwell, G. J.; Milbank, J. B.; Stevenson, R. J. Anticancer 2,3-dihydro-1H-pyrrolo[3,2-f]quinoline complexes of cobalt and chromium. US Patent 7064117B2
  • Ebenso, E. E.; Kabanda, M. M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L. C.; Singh, A. K.; Shukla, S. K.; Hammouti, B.; Khaled, K. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 5643–5676.
  • Srikar, S. K.; Giri, D. D.; Pal, D. B.; Kumar, P.; Upadhyay, S. N. Green synthesis of silver nanoparticles: A review. Green Sustainable Chem. 2016, 6, 34–56.
  • Masojidek, J.; Torzillo, G. Mass Cultivation of Freshwater Microalgae. Encyclopedia Ecol. 2008, 2,2226–2235. DOI: 10.1016/B978-008045405-4.00830-2.
  • Litchtenthaler. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. PACKER L and DOUCE R eds Methods in Enzymology. Academic Press: Washington, 1987, Vol. 148, pp. 350–382.
  • Bhattari, B.; Zaker, Y.; Bigioni, T. P. Green synthesis of gold and silver nanoparticles: Challenges and opportunities. Curr Opin Green Sustain Chem. 2018, 12, 91–100. DOI: 10.1016/j.cogsc.2018.06.007.
  • Noguez, C. Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment. J. Phys. Chem. C. 2007, 111, 3806–3819. DOI: 10.1021/jp066539m.
  • Ravindra, B. K.; Rajsab, A. H. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int. J. Pharm. Sci. 2014, 6, 372–376.
  • Aboelfetoh, E. F.; Shenody, E. I.; Ghobara, M. M. Eco-Friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa Serrulata): Reaction Optimization, Catalytic and Antibacterial Activities. Environ. Monit. Assess. 2017, 189, 349. DOI: 10.1007/s10661-017-6033-0.
  • Shende, S.; Gade, A.; Rai, M. Large-Scale Synthesis and Antibacterial Activity of Fungal-Derived Silver Nanoparticles. Environ. Chem. Lett. 2017, 15, 427–434. DOI: 10.1007/s10311-016-0599-6.
  • Sharma, B.; Purkayastha, D. D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C. R.; Ghosh, N. N.; Rout, J. Biosynthesis of Gold Nanoparticles Using a Freshwater Green Alga, Prasiola Crispa. Mater. Lett. 2014, 116, 94–97. DOI: 10.1016/j.matlet.2013.10.107.
  • Arya, A.; Gupta, K.; Chundawat, T.; Vaya, D. Biogenic Synthesis of Copper and Silver Nanoparticles Using Green Alga Botryococcus Braunii and Its Antimicrobial Activity. Bioinorg. Chem. Appl. 2018, 2018, 7879403–9. DOI: 10.1155/2018/7879403.
  • Sinha, S. N.; Paul, D.; Halder, N.; Sengupta, D.; Patra, S. K. Green Synthesis of Silver Nanoparticles Using Fresh Water Green Alga Pithophora Oedogonia (Mont.) Wittrock and Evaluation of Their Antibacterial Activity. Appl. Nanosci. 2015, 5, 703–709. DOI: 10.1007/s13204-014-0366-6.
  • Ahoskkumar, S.; Ravi, S.; Kathiravan, V.; Velmurugan, S. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim. Acta A. 2015, 134, 34–39. DOI: 10.1016/j.saa.2014.05.076.
  • Moodley, J. S.; Krishna, B. N.; Suresh, P.; Karen, S.; Govender, P. Green synthesis of silver nanoparticles from Moringa Oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci. 2018, 9, 101501.
  • Agasar, M.; Patil, M. R.; Keri, R. S. Titanium-based nanoparticles: A novel, facile and efficient catalytic system for one-pot synthesis of quinoline derivatives. CDC. 2018, 17–18, 178–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.