Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 18
444
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis of new bicarbazole-linked triazoles as non-cytotoxic reactive oxygen species (ROS) inhibitors

, , , , , & show all
Pages 2330-2341 | Received 28 Nov 2018, Published online: 28 Jun 2019

References

  • (a) Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. DOI: 10.1089/ars.2012.5149. (b)Yousuf, S.; Khan, K. M.; Salar, U.; Jabeen, A.; Ahmed, S.; Muhammad, M. T.; Faheem, A.; Perveen, S. New Bis-Pyrazolones as Potential Leads for Ros Inhibition; Environment Friendly Green Synthesis, Structural Characterization, and in Vitro Studies. Mc 2018, 14, 536–548. DOI: 10.2174/1573406414666180112122001.
  • (a) Beckhauser, T. F.; Francis-Oliveira, J.; De Pasquale, R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J. Exp. Neurosci. 2016, 10, 23–48. (b) Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. DOI: 10.5607/en.2015.24.4.325.
  • (a) Hidalgo, C.; Arias-Cavieres, A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda, Md.) 2016, 31, 201–215. DOI: 10.1152/physiol.00038.2015. (b) Hsu, H.-T.; Tseng, Y.-T.; Wong, W.-J.; Liu, C.-M.; Lo, Y.-C. Resveratrol Prevents Nanoparticles-Induced Inflammation and Oxidative Stress via Downregulation of PKC-α and NADPH Oxidase in Lung Epithelial A549 Cells. BMC Complement. Altern. Med. 2018, 18, 211. DOI: 10.1186/s12906-018-2278-6.
  • (a) Molatlhegi, R. P.; Phulukdaree, A.; Anand, K.; Gengan, R. M.; Tiloke, C.; Chuturgoon, A. A. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on a549 Lung Cancer Cell Line. PloS One 2015, 10, e0129874. DOI: 10.1371/journal.pone.0129874. (b) Salar, U.; Khan, K.; Jabeen, A.; Faheem, A.; Fakhri, M. I.; Saad, S.; Perveen, S.; Taha, M.; Hameed, A. Coumarin Sulfonates: As Potential Leads for ROS Inhibition. Bioorg. Chem. 2016, 69, 37–47. DOI: 10.1016/j.bioorg.2016.09.006. (c) Kattoor, A. J.; Pothineni, N. V. K.; Palagiri, D.; Mehta, J. L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. DOI: 10.1007/s11883-017-0678-6. (d) Goncharov, N. V.; Avdonin, P. V.; Nadeev, A. D.; Zharkikh, I. L.; Jenkins, R. O. Reactive Oxygen Species in Pathogenesis of atherosclerosis. Curr. Pharm. Des. 2015, 21, 1134–1146. DOI: 10.2174/1381612820666141014142557. (e) Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid. Med. Cell Longev. 2016, 2016, 1. DOI: 10.1155/2016/3565127.
  • (a) Yuan, J.; Kashiwagi, S.; Reeves, P.; Nezivar, J.; Yang, Y.; Arrifin, N. H.; Nguyen, M.; Jean-Mary, G.; Tong, X.; Uppal, P.; et al. A Novel Mycobacterial Hsp70-Containing Fusion Protein Targeting Mesothelin Augments Antitumor Immunity and Prolongs Survival in Murine Models of Ovarian Cancer and Mesothelioma. J. Hematol. Oncol. 2014, 7, 15. DOI: 10.1186/1756-8722-7-15. (b) Matsui, H.; Shimokawa, O.; Kaneko, T.; Nagano, Y.; Rai, K.; Hyodo, I. The Pathophysiology of Non-Steroidal anti-Inflammatory Drug (NSAID)-Induced Mucosal Injuries in Stomach and Small Intestine. J. Clin. Biochem. Nutr. 2011, 48, 107–111. DOI: 10.3164/jcbn.10-79. (c) Salar, U.; Khan, K.; Jabeen, A.; Faheem, A.; Ali, F.; Syed, S.; Ahmed, K.; Perveen, S. Anti-Inflammatory Activity of 3-Thiazolyl Coumarins. J. Chem. Soc. Pak. 2017, 39, 578–585.
  • (a) Nooron, N.; Athipornchai, A.; Suksamrarn, A.; Chiabchalard, A. Mahanine Enhances the Glucose-Lowering Mechanisms in Skeletal Muscle and Adipocyte Cells. Biochem. Biophys. Res. Commun. 2017, 494, 101–106. DOI: 10.1016/j.bbrc.2017.10.075. (b) Mounika, K. N.; Jyothi, A. N.; Raju, G. N.; Rao, R. Carbazole Derivatives in Cancer Treatment-a Review. WJPPS 2015, 4, 420–428.
  • (a) Pattanashetty, S. H.; Hosamani, K.; Shettar, A. K.; Mohammed Shafeeulla, R. Design, Synthesis and Computational Studies of Novel Carbazole N‐Phenylacetamide Hybrids as Potent Antibacterial, anti‐Inflammatory, and Antioxidant Agents. J. Heterocyclic Chem. 2018, 55, 1765–1774. DOI: 10.1002/jhet.3214. (b) Ma, Y.; Wang, Q.; Yu, K.; Fan, X.; Xiao, W.; Cai, Y.; Xu, P.; Yu, M.; Yang, H. 6-Formylindolo(3,2-b)Carbazole Induced Aryl Hydrocarbon Receptor Activation Prevents Intestinal Barrier Dysfunction through Regulation of Claudin-2 Expression. Chem.-Biol. Interact. 2018, 288, 83–90. DOI: 10.1016/j.cbi.2018.04.020. (c) Nalli, Y.; Khajuria, V.; Gupta, S.; Arora, P.; Riyaz-Ul-Hassan, S.; Ahmed, Z.; Ali, A. Correction: Four New Carbazole Alkaloids from Murraya Koenigii That Display anti-Inflammatory and anti-Microbial Activities. Org. Biomol. Chem. 2018, 16, 1994. 1994; DOI: 10.1039/C8OB90030B. (d) Nalli, Y.; Khajuria, V.; Gupta, S.; Arora, P.; Riyaz-Ul-Hassan, S.; Ahmed, Z.; Ali, A. Four New Carbazole Alkaloids from Murraya Koenigii That Display anti-Inflammatory and anti-Microbial Activities. Org. Biomol. Chem. 2016, 14, 3322–3332. DOI: 10.1039/C6OB00267F. (e) Muniyappan, G.; Kathvarayan, S.; Kella, C. R.; Kalliyappan, E.; Ponnusamy, S.; Thirumalai, P. P. Synthesis of Novel 4-Hydroxycarbazole Derivatives and Evaluation of Their in Vitro anti-Inflammatory, anti-Oxidant Activities and Molecular Docking. Res. Chem. Intermed. 2017, 43, 3377–3393. DOI: 10.1007/s11164-016-2831-1. (f) Prabhakar, V.; Babu, K. S.; Ravindranath, L.; SwarnaKumari, M.; Latha, J. Synthesis, Characterisation and Biological Evaluation of 1,5-Benzoxazepine Derivatives Containing Carbazole Ring. Heterocycl. Lett. 2015, 5, 579–594. (g) Shen, D.-Y.; Chan, Y.-Y.; Hwang, T.-L.; Juang, S.-H.; Huang, S.-C.; Kuo, P.-C.; Thang, T. D.; Lee, E.-J.; Damu, A. G.; Wu, T.-S. Constituents of the Roots of Clausena Lansium and Their Potential anti-Inflammatory Activity. J. Nat. Prod. 2014, 77, 1215–1223. DOI: 10.1021/np500088u.
  • (a) Khan, M. A.; Saleem, A.; Ghouri, N.; Hameed, A.; Choudhary, M. I.; Z Basha, F. Synthesis and in Vitro Evaluation of Dibenzoazepine Triazole Derivatives: A Novel Class of Antileishmanial Agents. Lddd. 2015, 12, 597–606. DOI: 10.2174/1570180812999150225111959. (b) Iqbal, S.; Khan, M. A.; Javaid, K.; Sadiq, R.; Fazal-Ur-Rehman, S.; Choudhary, M. I.; Basha, F. Z. New Carbazole Linked 1, 2, 3-Triazoles as Highly Potent Non-Sugar α-Glucosidase Inhibitors. Bioorg. Chem. 2017, 74, 72–81. DOI: 10.1016/j.bioorg.2017.07.006. (c) Khan, M. A.; Javaid, K.; Wadood, A.; Jamal, A.; Batool, F.; Fazal-Ur-Rehman, S.; Basha, F. Z.; Choudhary, M. I. In Vitro Alpha-Glucosidase Inhibition by Non-Sugar Based Triazoles of Dibenzoazepine, Their Structure-Activity Relationship, and Molecular Docking. Med. Chem. 2017, 13, 698–704. (d) Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.-C.; Chang, L.; Lv, Z.-S.; Feng, L.-S. Triazole Derivatives and Their anti-Tubercular Activity. Eur. J. Med. Chem. 2017, 138, 501–513. DOI: 10.1016/j.ejmech.2017.06.051. (e) Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, Synthesis, and Biological Activity of New Triazole and Nitro-Triazole Derivatives as Antifungal Agents. Molecules 2017, 22, 1150. DOI: 10.3390/molecules22071150. (f) Ramírez-Villalva, A.; González-Calderón, D.; Rojas-García, R. I.; González-Romero, C.; Tamaríz-Mascarúa, J.; Morales-Rodríguez, M.; Zavala-Segovia, N.; Fuentes-Benítes, A. Synthesis and Antifungal Activity of Novel Oxazolidin-2-One-Linked 1,2,3-Triazole Derivatives. Med. Chem. Commun. 2017, 8, 2258–2262. 8, DOI: 10.1039/C7MD00442G. (g) Ansari, K.; Lal, C.; Khitoliya, R. Synthesis and Biological Activity of Some Triazole-Bearing Benzimidazole Derivatives. J. Serb. Chem. Soc. 2011, 76, 341–352. DOI: 10.2298/JSC100301029A. (h) Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological Significance of Triazole Scaffold. J. Enzym. Inh. Med. Chem. 2011, 26, 1–21. DOI: 10.3109/14756360903524304. (i) Singhal, N.; Sharma, P.; Dudhe, R.; Kumar, N. Recent Advancement of Triazole Derivatives and Their Biological Significance. J. Chem. Pharm. Res. 2011, 3, 126–133. (j) Anandhan, R.; Kannan, A.; Rajakumar, P. Synthesis and anti-Inflammatory Activity of Triazole-Based Macrocyclic Amides through Click Chemistry. Syn. Comm. 2017, 47, 671–679. DOI: 10.1080/00397911.2016.1254800. (k) Song, M.-X.; Deng, X.-Q. Recent Developments on Triazole Nucleus in Anticonvulsant Compounds: A Review. J. Enzym. Inh. Med. Chem. 2018, 33, 453–478. DOI: 10.1080/14756366.2017.1423068.
  • (a) Helfand, S. L.; Werkmeister, J.; Roder, J. C. Chemiluminescence Response of Human Natural Killer Cells. I. The Relationship between Target Cell Binding, Chemiluminescence, and Cytolysis. J. Exp. Med. 1982, 156, 492–505. DOI: 10.1084/jem.156.2.492. (b) Adhikaria, A.; Vohra, M. I.; Jabeen, A.; Dastagir, N.; Choudhary, M. I. Antiinflammatory Steroidal Alkaloids from Sarcococca Wallichii of Nepalese Origin. Nat. Prod. Comm. 2015, 10, 1533–1536.
  • Masson, P.; Froment, M.-T.; Fortier, P.-L.; Visicchio, J.-E.; Bartels, C. F.; Lockridge, O. Butyrylcholinesterase-Catalysed Hydrolysis of Aspirin, a Negatively Charged Ester, and Aspirin-Related Neutral Esters. Biochim. Biophys. Acta Protein Struct. Molec. Enzym. 1998, 1387, 41–52. DOI: 10.1016/S0167-4838(98)00104-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.