Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 17
923
Views
8
CrossRef citations to date
0
Altmetric
Articles

2-Phenylindole derivatives as anticancer agents: synthesis and screening against murine melanoma, human lung and breast cancer cell lines

, , , , , ORCID Icon, & ORCID Icon show all
Pages 2258-2269 | Received 06 Feb 2019, Published online: 19 Jun 2019

References

  • Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among US FDA Approved Pharmaceuticals: Mini Perspective. J. Med. Chem. 2014, 57, 10257–10274. DOI: 10.1021/jm501100b.
  • Sharma, V.; Kumar, P.; Pathak, D. Biological Importance of the Indole Nucleus in Recent Years: A Comprehensive Review. J. Heterocycl. Chem. 2010, 47, 491–502.
  • Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497. DOI: 10.1021/cr900211p.
  • Dadashpour, S.; Emami, S. Indole in the Target-Based Design of Anticancer Agents: A Versatile Scaffold with Diverse Mechanism. Eur. J. Med. Chem. 2018, 150, 9–29. DOI: 10.1016/j.ejmech.2018.02.065.
  • Sayed, M.; Kamal El-Dean, A. M.; Ahmed, M.; Hassanien, R. Synthesis of Some Heterocyclic Compounds Derived from Indole as Antimicrobial Agents. Synth. Commun. 2018, 48, 413–421. DOI: 10.1080/00397911.2017.1403627.
  • Gastpar, R.; Goldbrunner, M.; Marko, D.; Von Angerer, E. Methoxy-Substituted 3-Formyl-2-Phenylindoles Inhibit Tubulin Polymerization. J. Med. Chem. 1998, 41, 4965–4972. DOI: 10.1021/jm980228l.
  • Singh Sidhu, J.; Singla, R.; Jaitak, V. Indole Derivatives as Anticancer Agents for Breast Cancer Therapy: A Review. Anti-Cancer Agents in Med. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2016, 16, 160–173.
  • Patil, S. A.; Patil, R.; Miller, D. D. Indole Molecules as Inhibitors of Tubulin Polymerization: potential New Anticancer Agents. Future Med. Chem. 2012, 4, 2085–2115. DOI: 10.4155/fmc.12.141.
  • Patil, R.; Patil, S. A.; Beaman, K. D.; Patil, S. A. Indole Molecules as Inhibitors of Tubulin Polymerization: Potential New Anticancer Agents, an Update (2013–2015). Future Med. Chem. 2016, 8, 1291–1316. DOI: 10.4155/fmc-2016-0047.
  • Dumontet, C.; Jordan, M. A. Microtubule-Binding Agents: A Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790. DOI: 10.1038/nrd3253.
  • Wienecke, A.; Bacher, G. Indibulin, a Novel Microtubule Inhibitor, Discriminates between Mature Neuronal and Nonneuronal Tubulin. Cancer Res. 2009, 69, 171–177. DOI: 10.1158/0008-5472.CAN-08-1342.
  • Yu, X.; Park, E. J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Synthesis of 2-Arylindole Derivatives and Evaluation as Nitric Oxide Synthase and NFκB Inhibitors. Org. Biomol. Chem. 2012, 10, 8835–8847. DOI: 10.1039/c2ob26456k.
  • El-Nakkady, S. S.; Hanna, M. M.; Roaiah, H. M.; Ghannam, I. A. Synthesis, Molecular Docking Study and Antitumor Activity of Novel 2-Phenylindole Derivatives. Eur. J. Med. Chem. 2012, 47, 387–398. DOI: 10.1016/j.ejmech.2011.11.007.
  • Lal, S.; J Snape, T. 2-Arylindoles: A Privileged Molecular Scaffold with Potent, Broad-Ranging Pharmacological Activity. Cmc. 2012, 19, 4828–4837. DOI: 10.2174/092986712803341449.
  • Kelly, P. M.; Bright, S. A.; Fayne, D.; Pollock, J. K.; Zisterer, D. M.; Williams, D. C.; Meegan, M. J. Synthesis, Antiproliferative and Pro-Apoptotic Activity of 2-Phenylindoles. Bioorg. Med. Chem. 2016, 24, 4075–4099. DOI: 10.1016/j.bmc.2016.06.050.
  • Gaikwad, R.; Amin, S. A.; Adhikari, N.; Ghorai, S.; Jha, T.; Gayen, S. Identification of Molecular Fingerprints of Phenylindole Derivatives as Cytotoxic Agents: A multi-QSAR Approach. Struct. Chem. 2018, 29, 1095–1107. DOI: 10.1007/s11224-018-1094-4.
  • Gaikwad, R.; Ghorai, S.; Amin, S. A.; Adhikari, N.; Patel, T.; Das, K.; Jha, T.; Gayen, S. Monte Carlo Based Modelling Approach for Designing and Predicting Cytotoxicity of 2-Phenylindole Derivatives against Breast Cancer Cell Line MCF7. Toxicol. In Vitro 2018, 52, 23–32. DOI: 10.1016/j.tiv.2018.05.016.
  • Mphahlele, M.; Mmonwa, M.; Aro, A.; McGaw, L.; Choong, Y. Synthesis, Biological Evaluation and Molecular Docking of Novel Indole-Aminoquinazoline Hybrids for Anticancer Properties. Ijms. 2018, 19, 2232. DOI: 10.3390/ijms19082232.
  • Aronchik, I.; Kundu, A.; Quirit, J. G.; Firestone, G. L. The anti-Proliferative Response of Indole-3-Carbinol in Human Melanoma Cells Is Triggered by an Interaction with NEDD4-1 and Disruption of Wild-Type PTEN Degradation. Mol. Cancer Res. 2014, 12, 1621–1634. DOI: 10.1158/1541-7786.MCR-14-0018.
  • Soares, P. R.; de Oliveira, P. L.; de Oliveira, C. M.; Kato, L.; Guillo, L. A. In Vitro Antiproliferative Effects of the Indole Alkaloid Vallesiachotamine on Human Melanoma Cells. Arch. Pharm. Res. 2012, 35, 565–571. DOI: 10.1007/s12272-012-0320-7.
  • Nesi, G.; Sestito, S.; Mey, V.; Ricciardi, S.; Falasca, M.; Danesi, R.; Lapucci, A.; Breschi, M. C.; Fogli, S.; Rapposelli, S. Synthesis of Novel 3, 5-Disubstituted-2-Oxindole Derivatives as Antitumor Agents against Human Nonsmall Cell Lung Cancer. ACS Med. Chem. Lett. 2013, 4, 1137–1141. DOI: 10.1021/ml400162g.
  • Rahimi, M.; Huang, K. L.; Tang, C. K. 3, 3′-Diindolylmethane (DIM) Inhibits the Growth and Invasion of Drug-Resistant Human Cancer Cells Expressing EGFR Mutants. Cancer Lett. 2010, 295, 59–68. DOI: 10.1016/j.canlet.2010.02.014.
  • Hwang, D. J.; Wang, J.; Li, W.; Miller, D. D. Structural Optimization of Indole Derivatives Acting at Colchicine Binding Site as Potential Anticancer Agents. ACS Med. Chem. Lett. 2015, 6, 993–997. DOI: 10.1021/acsmedchemlett.5b00208.
  • Bai, Z.; Gao, M.; Zhang, H.; Guan, Q.; Xu, J.; Li, Y.; Qi, H.; Li, Z.; Zuo, D.; Zhang, W.; Wu, Y. BZML, a Novel Colchicine Binding Site Inhibitor, Overcomes Multidrug Resistance in A549/Taxol Cells by Inhibiting P-gp Function and Inducing Mitotic Catastrophe. Cancer Lett. 2017, 402, 81–92. DOI: 10.1016/j.canlet.2017.05.016.
  • Haag, B. A.; Zhang, Z. G.; Li, J. S.; Knochel, P. Fischer Indole Synthesis with Organozinc Reagents. Angew. Chem. Int. Ed. 2010, 49, 9513–9516. DOI: 10.1002/anie.201005319.
  • Vuong, H.; Duarte, S.; Klumpp, D. A. One-Pot Reactions Involving the Fischer Indole Synthesis and Friedel–Crafts Reactions. Top. Catal. 2018, 61, 685–688. DOI: 10.1007/s11244-018-0908-3.
  • Inman, M.; Carbone, A.; Moody, C. J. Two-Step Route to Indoles and Analogues from Haloarenes: A Variation on the Fischer Indole Synthesis. J. Org. Chem. 2012, 77, 1217–1232. DOI: 10.1021/jo201866c.
  • Fischer, E. Synthese von Indolderivaten. Justus Liebigs. Ann. Chem. 1886, 236, 116–126. DOI: 10.1002/jlac.18862360106.
  • Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. Chem. Rev. 2006, 106, 2875–2911. DOI: 10.1021/cr0505270.
  • Wagaw, S.; Yang, B. H.; Buchwald, S. L. A Palladium-Catalyzed Method for the Preparation of Indoles via the Fischer Indole Synthesis. J. Am. Chem. Soc. 1999, 121, 10251–10263. DOI: 10.1021/ja992077x.
  • Xu, D. Q.; Wu, J.; Luo, S. P.; Zhang, J. X.; Wu, J. Y.; Du, X. H.; Xu, Z. Y. Fischer Indole Synthesis Catalyzed by Novel SO3H-Functionalized Ionic Liquids in Water. Green Chem. 2009, 11, 1239–1246. DOI: 10.1039/b901010f.
  • Inman, M.; Moody, C. J. Indole Synthesis–Something Old, Something New. Chem. Sci. 2013, 4, 29–41. DOI: 10.1039/C2SC21185H.
  • Patel, T.; Gaikwad, R.; Jain, K.; Ganesh, R.; Bobde, Y.; Ghosh, B.; Das, K.; Gayen, S. First Report on 3‐(3‐Oxoaryl) Indole Derivatives as Anticancer Agents: Microwave Assisted Synthesis, in Vitro Screening and Molecular Docking Studies. ChemistrySelect 2019, 4, 4478–4482. DOI: 10.1002/slct.201900088.
  • Quirit, J. G.; Lavrenov, S. N.; Poindexter, K.; Xu, J.; Kyauk, C.; Durkin, K. A.; Aronchik, I.; Tomasiak, T.; Solomatin, Y. A.; Preobrazhenskaya, M. N.; Firestone, G. L. Indole-3-Carbinol (I3C) Analogues Are Potent Small Molecule Inhibitors of NEDD4-1 Ubiquitin Ligase Activity That Disrupt Proliferation of Human Melanoma Cells. Biochem. Pharmacol. 2017, 127, 13–27. DOI: 10.1016/j.bcp.2016.12.007.
  • Sweidan, K.; Sabbah, D. A.; Bardaweel, S.; Dush, K. A.; Sheikha, G. A.; Mubarak, M. S. Computer-Aided Design, Synthesis, and Biological Evaluation of New Indole-2-Carboxamide Derivatives as PI3Kα/EGFR Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 2685–2690. DOI: 10.1016/j.bmcl.2016.04.011.
  • Yosaatmadja, Y.; Silva, S.; Dickson, J. M.; Patterson, A. V.; Smaill, J. B.; Flanagan, J. U.; McKeage, M. J.; Squire, C. J. Binding Mode of the Breakthrough Inhibitor AZD9291 to Epidermal Growth Factor Receptor Revealed. J. Struct. Biol. 2015, 192, 539–544. DOI: 10.1016/j.jsb.2015.10.018.
  • Ward, R. A.; Anderton, M. J.; Ashton, S.; Bethel, P. A.; Box, M.; Butterworth, S.; Colclough, N.; Chorley, C. G.; Chuaqui, C.; Cross, D. A. E.; et al. Structure-and Reactivity-Based Development of Covalent Inhibitors of the Activating and Gatekeeper Mutant Forms of the Epidermal Growth Factor Receptor (EGFR). J. Med. Chem. 2013, 56, 7025–7048. DOI: 10.1021/jm400822z.
  • Venkata, S. R. G.; Narkhede, U. C.; Jadhav, V. D.; Gangu, N.; Bobde, Y.; Ghosh, B. Design, Synthesis and Anticancer Evaluation of Spiro [Cyclohexane‐1, 1′‐Indene]‐2, 5‐Diene Analogues. ChemistrySelect 2018, 3, 12139–12143. DOI: 10.1002/slct.201802675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.