Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 18
561
Views
11
CrossRef citations to date
0
Altmetric
Articles

ZnCl2+Urea, the deep eutectic solvent promoted synthesis of the spirooxindolopyrans and xanthenes through a pseudo-three-component approach

&
Pages 2342-2349 | Received 25 Mar 2019, Published online: 28 Jun 2019

References

  • Gadilohar, B. L.; Shankarling, G. S. Cholone Based Ionic Liquids and Their Applications in Organic Transformation. J. Mol. Liq. 2017, 227, 234–261. DOI: 10.1016/j.molliq.2016.11.136.
  • Anastas, P. T.; Kirchhoff, M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. DOI: 10.1021/ar010065m.
  • Ramesh, G.; Gali, R.; Velpula, R.; Janardhan, B.; Rajitha, B. Recyclable Task Specific Acidic Ionic Liquid [NMP]H2PO4: Microwave Assisted, Efficient One-Pot, Two-Step Tandem Synthesis of Fused Thiazolo[2,3-b]Quinazoline Derivatives. Res. Chem. Intermed. 2016, 42, 3863–3873. DOI: 10.1080/15533174.2013.862828.
  • Azizi, N.; Dezfooli, S.; Hashemi, M. M. Greener Synthesis of Spirooxindole in Deep Eutectic Solvent. J. Mol. Liq. 2014, 194, 62–67. DOI: 10.1016/j.molliq.2014.01.009.
  • Satasia, S. P.; Kalaria, P. N.; Avalani, J. R.; Raval, D. K. An Efficient Approach for the Synthesis of Spirooxindole Derivatives Catalyzed by Novel Sulfated Choline Based Heteropolyanion at Room Temperature. Tetrahedron 2014, 70, 5763–5767. DOI: 10.1016/j.tet.2014.06.050.
  • Cardellini, F.; Tiecco, M.; Germani, R.; Cardinali, G.; Corte, L.; Roscini, L.; Spreti, N. Novel Zwitter Ionic Deep Eutectic Solvents from Trimethylglycine and Carboxylic Acids: Characterization of Their Properties and Their Toxicity. RSC Adv. 2014, 4, 55990–56002. DOI: 10.1039/C4RA10628H.
  • Francisco, M.; Bruinhorst, A. V. D.; Kroon, M. C. New Natural and Renewable Low Transition Temperature Mixtures (LTTMs): Screening as Solvents for Lignocellulosic Biomass Processing. Green Chem. 2012, 14, 2153–2157. DOI: 10.1039/c2gc35660k.
  • Zonouz, A. M.; Eskandari, I.; Khavasi, H. R. A Green and Convenient Approach for the Synthesis of Methyl 6-Amino-5-Cyano-4-Aryl-2,4-Dihydropyrano[2,3-c]Pyrazole-3-Carboxylates via a One-Pot, Multi-Component Reaction in Water. Tetrahedron. Lett. 2012, 53, 5519–5522. DOI: 10.1016/j.tetlet.2012.08.010.
  • Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2083. DOI: 10.1021/cr980032t. DOI: 10.1021/cr980032t.
  • Tomé, L. I. N.; Baião, V.; Silva, W. D.; Brett, C. M. A. Deep Eutectic Solvents for the Production and Application of New Materials. Appl. Mater. Today 2018, 10, 30–50. DOI: 10.1016/j.apmt.2017.11.005.
  • Francisco, M.; Bruinhorst, A. V. D.; Kroon, M. C. Low‐Transition‐Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. DOI: 10.1002/anie.201207548.
  • Nishtala, V. B.; Nanubolu, J. B.; Basavoju, S. Ultrasound-Assisted Rapid and Efficient One-Pot Synthesis of Furanyl Spirooxindolo and Spiroquinoxalinopyrrolizidines by 1,3-Dipolar Cycloaddition: A Green Protocol. Res. Chem. Intermed. 2017, 43, 1365–1381. DOI: 10.1007/s11164-016-2703-8.
  • Yu, B.; Yu, D. Q.; Liu, H. M. Spirooxindoles: Promising Scaffolds for Anticancer Agents. Eur. J. Med. Chem. 2015, 97, 673–698. DOI: 10.1016/j.ejmech.2014.06.056.
  • Dandia, A.; Khan, S.; Soni, P.; Indora, A.; Mahawar, D. K.; Pandya, P.; Chauhan, C. S. Diversity-Oriented Sustainable Synthesis of Antimicrobial Spiropyrrolidine/Thiapyrrolizidine Oxindole Derivatives: New Ligands for a Metallo-β-Lactamase from Klebsiella pneumonia. Bioorg. Med. Chem. Lett. 2017, 27, 2873–2880. DOI: 10.1016/j.bmcl.2017.04.083.
  • (a) Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P. T. Novel Spirooxindole–Pyrrolidine Compounds: Synthesis, Anticancer and Molecular Docking Studies. Eur. J. Med. Chem. 2014, 74, 50–64. DOI: 10.1016/j.ejmech.2013.12.027. (b) Pogaku, V.; Krishna, V. S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-Ionic Liquid Synergy for the Synthesis of New Potent anti-Tuberculosis 1,2,4-Triazol-1-yl-Pyrazole Based Spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett. 2019, 29, 1682–1687. DOI: 10.1016/j.bmcl.2019.04.026.
  • Chen, C.; Lv, C.; Liang, J.; Jin, J.; Wang, L.; Wu, C.; Shen, R. An Efficient Synthesis of Spiro[Indoline-3,9′-Xanthene]Trione Derivatives Catalyzed by Magnesium Perchlorate. Molecules 2017, 22, 1295–1302. DOI: 10.3390/molecules22081295.
  • Salek, M. R.; Zolfigol, M. A.; Zarei, M. Synthesis of a Novel DABCO-Based Nanomagnetic Catalyst with Sulfonic Acid Tags: Application to the Synthesis of Diverse Spiropyrans. Res. Chem. Intermed. 2018, 44, 5255–5269. DOI: 10.1007/s11164-018-3421-1.
  • Baradarani, M. M.; Khoshsirat, S.; Moharampour, M.; Ebrahimisaatlo, B.; Rashidi, A.; Sokołowska, R. E.; Joule, J. A.; Spiro, Spiro[4H‐pyran‐3,3′‐oxindoles] Derived from 1,2,3,4‐Tetrahydroquinoline-part2. J. Heterocyclic Chem. 2017, 54, 944–951. DOI: 10.1002/jhet.2658.
  • Ahadi, S.; Khavasi, H. R.; Bazgir, A. A Clean Synthesis of Spiro[Indoline-3,9′-Xanthene]Trione Derivatives. Chem. Pharm. Bull. 2008, 56, 1328–1330. DOI: 10.1248/cpb.56.1328.
  • Sarkar, P.; Mukhopadhyay, C. p-tert-Butylcalix[8]Arene: An Effective Nano-Ranged Organocatalyst for the Syntheses of Xanthenes and Acridines. Curr Organocatal. 2016, 3, 205–215. DOI: 10.2174/2213337202666150619173329.
  • Kothandapani, J.; Ganesan, A.; Mani, G. K.; Kulandaisamy, A. J.; Rayappan, J. B.; Ganesan, S. S. Zinc Oxide Surface: A Versatile Nanoplatform for Solvent-Free Synthesis of Diverse Isatin Derivatives. Tetrahedron Lett. 2016, 57, 3472–3475. DOI: 10.1016/j.tetlet.2016.06.094.
  • Das, P.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Heterogeneous Ditopic ZnFe2O4 Catalyzed Synthesis of 4H-Pyrans: Further Conversion to 1,4-DHPs and Report of Functional Group Interconversion from Amide to Ester. Green Chem. 2014, 16, 1426–1435. DOI: 10.1039/C3GC42095G.
  • Jaberi, K. Z.; Jaafarizadeh, A. One-Pot, Three-Component Reaction of Dimedone, Amines, and Isatin in the Presence of Tris(Hydrogensulfato) Boron: Synthesis of Pyrroloacridine Derivatives. Res. Chem. Intermed. 2015, 41, 4913–4918. DOI: 10.1007/s11164-014-1576-y.
  • Suman, R.; Bhaumik, A.; Pramanik, M.; Butcher, R. J.; Yildirim, S. O. Binary Conjugate Brønsted–Lewis Acid Supported on Mesoporous Silica Nanoparticles for the Domino Addition/Elimination/Addition and Addition/Elimination/Addition/Cyclization Cascade. Catal. Commun. 2014, 43, 173–178. DOI: 10.1016/j.catcom.2013.10.012.
  • Liang, B.; Kalidindi, S.; Porco, J. A., Jr.; Stephenson, C. R. J. Multicomponent Reaction Discovery: Three-Component Synthesis of Spirooxindoles. Org. Lett. 2010, 12, 572–575. DOI: 10.1021/ol902764k.
  • Gao, L.; Zha, Y.; Tao, S.; Gao, Y.; Chen, M.; Jiang, L.; Rong, L. I2-Catalyzed Three-Component Procedure for Synthesis of Substituted Spiro[Indoline-3,7′-Pyrano[3,2-c:5,6-c′]Dichromene]-2,6′,8′-Trione Derivatives. Res. Chem. Intermed. 2015, 41, 5627–5634. DOI: 10.1007/s11164-014-1688-4.
  • Parthasarathy, K.; Praveen, C.; Jeyaveeran, J. C.; Prince, A. A. M. Gold Catalyzed Double Condensation Reaction: Synthesis, Antimicrobial and Cytotoxicity of Spirooxindole Derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 4310–4317. DOI: 10.1016/j.bmcl.2016.07.036.
  • Ghasemzadeh, M. S.; Akhlaghinia, B. γ‐Fe2O3@SiO2‐EC‐ZnII: A Magnetic Recyclable Nanocatalyst for the Synthesis of Spiro[Indoline‐3,9′‐Xanthene]Trione Derivatives in Aqueous Media. Chemistryselect 2018, 3, 3161–3170. DOI: 10.1002/slct.201703189.
  • Chandam, D. R.; Patravale, A. A.; Jadhav, S. D.; Deshmukh, M. B. Low Melting Oxalic Acid Dihydrate: Proline Mixture as Dual Solvent/Catalyst for Synthesis of Spiro[Indoline-3,9′-Xanthene]Trione and Dibarbiturate Derivatives. J. Mol. Liq. 2017, 240, 98–105. DOI: 10.1016/j.molliq.2017.05.070.
  • Joshi, R.; Kumawat, A.; Singh, S.; Roy, T. K.; Pardasani, R. T. Synthesis of Spirooxindoles through Cyclocondensation of Isatin and Cyclic 1,3‐Diones. J. Heterocyclic Chem. 2018, 55, 1783–1790. DOI: 10.1002/jhet.3217.
  • Seyedi, N.; Khabazzadeh, H.; Saeednia, S. ZnCl2/Urea as a Deep Eutectic Solvent for the Preparation of Bis(Indolyl)Methanes under Ultrasonic Conditions. Synth. React. Inorg. Met-Org. Nano-Met. Chem. 2015, 45, 1501–1505. DOI: 10.1080/15533174.2013.862828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.