Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 22
695
Views
6
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Application of Cope rearrangement in synthesis

&
Pages 3101-3111 | Received 30 Jul 2019, Published online: 09 Sep 2019

References

  • Parr, B. T.; Davies, H. M. L. Rhodium-Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4-Alkenyl-1-Sulfonyl-1,2,3-Triazoles with Dienes. Angew. Chem. 2013, 125, 10228–10231. DOI: 10.1002/ange.201304310.
  • Schneider, C.; Weise, C. F. 5.19 Cope, oxy-Cope, and Anionic oxy-Cope Rearrangements. Compr Org Synth II. 2014, 120, 867–911.
  • Foster, E. G.; Cope, A. C.; Daniels, F. Activation Energies and Entropies of Activation in the Rearrangement of Allyl Groups in Three Carbon systems1. J. Am. Chem. Soc. 1947, 69, 1893–1896. DOI: 10.1021/ja01200a014.
  • Felix, R. J.; Weber, D.; Gutierrez, O.; Tantillo, D. J.; Gagné, M. R. A Gold-Catalysed Enantioselective Cope Rearrangement of Achiral 1,5-Dienes. Nature Chem. 2012, 4, 405–409. DOI: 10.1038/nchem.1327.
  • Khavani, M.; Izadyar, M.; Rezaeian, M. A Dft Study of Solvent Effects on the Kinetics and Mechanism of the [3,3] Hetero-Cope Rearrangement of 1-Butene Thiobenzoate. Prog. React. Kinet. Mec. 2016, 41, 153–158. DOI: 10.3184/146867816X14634977847625.
  • Rueping, M.; Antonchick, A. Catalytic Asymmetric Aminoallylation of Aldehydes: A Catalytic Enantioselective Aza‐Cope Rearrangement. Angew Chem. 2010, 40, 10090–10093.
  • Chen, X.; Fan, H.; Zhang, S.; Yu, C.; Wang, W. Facile Installation of 2-Reverse Prenyl Functionality into Indoles by a Tandem n-Alkylation-Aza-Cope Rearrangement Reaction and Its Application in Synthesis. Chem. Eur. J. 2016, 47, 716–723. DOI: 10.1002/chem.201503355.
  • Haeffner, F.; Houk, K. N.; Reddy, Y. R.; Paquette, L. A. Mechanistic Variations and Rate Effects of Alkoxy and Thioalkoxy Substituents on Anionic oxy-Cope Rearrangements. J. Am. Chem. Soc. 1999, 121, 11880–11884. DOI: 10.1021/ja993274z.
  • Yang, B.; Zhao, J.; Chen, G. Study on Oxy-Cope Rearrangement Catalyzed by Antibody Enzymes. Org Chem 2000, 20, 725–730.
  • Baumann, H.; Chen, P. Density Functional Study of the Oxy‐Cope Rearrangement. HCA. 2001, 84, 124–140. DOI: 10.1002/1522-2675(20010131)84:1<124::AID-HLCA124>3.0.CO;2-N.
  • Kaldre, D.; Gleason, J. L. An Organocatalytic Cope Rearrangement. Angew. Chem. Int. Ed. Engl. 2016, 55, 11557–11561. DOI: 10.1002/anie.201606480.
  • Li, X.; Zhang, M.; Shu, D.; Robichaux, P. J.; Huang, S.; Tang, W. Cheminform Abstract: rhodium-Catalyzed Ring Expansion of Cyclopropanes to Seven-Membered Rings by 1,5 C–C Bond Migration. Angew. Chem. 2012, 43, 10605–10608. DOI: 10.1002/chin.201210050.
  • Vedejs, E.; Wilber, W. R.; Twieg, R. An Abortive (CH)12 Synthesis. Cis-Fused Divinyl Cyclopropanes Which Cannot Cope. J. Org. Chem. 1977, 42, 401–409. DOI: 10.1021/jo00423a001.
  • Piers, E.; Burmeister, M. S.; Reissig, H.-U. Thermal Rearrangement of Functionalized 1,2-Divinylcyclopropane Systems. A Convenient Synthesis of Substituted 4-Cyclohepten-1-Ones. Can. J. Chem. 1986, 64, 180–187. DOI: 10.1139/v86-030.
  • Graulich, N. The Cope Rearrangement—the First Born of a Great Family. Wires. Comput. Mol. Sci. 2011, 1, 172–190. DOI: 10.1002/wcms.17.
  • Spangler, J. E.; Lian, Y.; Raikar, S. N.; Davies, H. M. L. Synthesis of Complex Hexacyclic Compounds via a Tandem rh(ii)-Catalyzed Double-Cyclopropanation/Cope Rearrangement/Diels–Alder Reaction. Org. Lett. 2014, 16, 4794–4797. DOI: 10.1021/ol502257d.
  • Salomon, R. G.; Salomon, M. F. 2,3-Dioxabicyclo [2.2.1] Heptane. The Strained Bicyclic Peroxide Nucleus of Prostaglandin Endoperoxides. J. Am. Chem. Soc. 1977, 99, 3501–3503. DOI: 10.1021/ja00452a052.
  • Davies, H. Tandem Cyclopropanation/Cope Rearrangement: A General Method for the Construction of Seven-Membered Rings. Tetrahedron. 1993, 49, 5203–5223. DOI: 10.1016/S0040-4020(01)82371-1.
  • Davies, H. M. L.; Lian, Y. The Combined C-H Functionalization/Cope Rearrangement: discovery and Applications in Organic Synthesis. Acc. Chem. Res. 2012, 45, 923–935. DOI: 10.1021/ar300013t.
  • Abdelkafi, H.; Nay, B. Natural Products from Cephalotaxus sp.: Chemical Diversity and Synthetic Aspects. Nat. Prod. Rep. 2012, 29, 845–869. DOI: 10.1039/c2np20037f.
  • Xiao, Q.; Wang, J. Ruthenium Divalent Catalyzed Rearrangement of Carbene via Sulfur Yelide [2,3]-σ. J. Chem. 2007, 16, 1733–1735.
  • Maguire, M.; Poole, S.; Coates, A. R. M.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. Comparative Cell Signalling Activity of Ultrapure Recombinant Chaperonin 60 Proteins from Prokaryotes and Eukaryotes. Insect Sci. 2010, 115, 231–238. DOI: 10.1111/j.1365-2567.2005.02155.x.
  • Aumann, R.; Knecht, J. 4,5‐Homotropyliden‐Übergangsmetallkomplexe, Thermische Und Photochemische Umlagerungen. Chem. Ber. 2010, 111, 3429–3441. DOI: 10.1002/cber.19781111017.
  • Zou, Y.; Ding, C. M.; Zhou, L. J. Tandem Cross-Dimerisation/oxonia-Cope Reaction of Carbonyl Compounds to Homoallylic Esters and Lactones. Angew. Chem. Int. Ed. 2012, 23, 5647–5651. DOI: 10.1002/anie.201200425.
  • Zou, Y.; Mouhib, H.; Wang, Q. Efficient Macrocyclization by a Novel Oxy-oxonia-Cope Reaction: synthesis and Olfactory Properties of New Macrocyclic Musks. Chem. Eur. J. 2012, 23, 7010–7015. DOI: 10.1002/chem.201200882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.