Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 3
332
Views
3
CrossRef citations to date
0
Altmetric
Articles

Convenient one-step synthesis of quinoline-3,4-dicarboxylate derivatives

& ORCID Icon
Pages 379-387 | Received 13 Jul 2020, Published online: 05 Oct 2020

References

  • Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Borea, P. A. New 2-Arylpyrazolo[4,3-c]Quinoline Derivatives as Potent and Selective Human A3 Adenosine Receptor Antagonists. J. Med. Chem. 2005, 48, 5001–5008. DOI: 10.1021/jm050125k.
  • Kaila, N.; Janz, K.; DeBernardo, S.; Bedard, P. W.; Camphausen, R. T.; Tam, S.; Tsao, D. H. H.; Keith, J. C.; Nickerson-Nutter, C.; Shilling, A.; et al. Synthesis and Biological Evaluation of Quinoline Salicylic Acids as P-Selectin Antagonists. J. Med. Chem. 2007, 50, 21–39. DOI: 10.1021/jm0602256.
  • Wang, K.; Herdtweck, E.; Dömling, A. Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3-Carboxamides. ACS Comb. Sci. 2012, 14, 316–322. DOI: 10.1021/co3000133.
  • (a) Kravchenko, D. V.; Kysil, V. M.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Ivachtchenko, A. V. Pyrrolo[3,4-c]Quinoline-1,3-Diones as Potent Caspase-3 Inhibitors. Synthesis and SAR of 2-Substituted 4-Methyl-8- (Morpholine-4-Sulfonyl)-Pyrrolo[3,4-c] Quinoline-1,3-Diones. Eur. J. Med. Chem. 2005, 40, 1377–1383. DOI: 10.1016/j.ejmech.2005.07.011. (b) Kravchenko, D. V.; Kysil, V. V.; Ilyn, A. P.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Ivachtchenko, A. V. 1,3-Dioxo-4-Methyl-2,3-Dihydro-1H-Pyrrolo[3,4-c] Quinolines as Potent Caspase-3 Inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1841–1845. DOI: 10.1016/j.bmcl.2005.02.027.
  • (a) Klingenstein, R.; Melnyk, P.; Leliveld, S. R.; Ryckebusch, A.; Korth, C. Similar Structure-Activity Relationships of Quinoline Derivatives for Antiprion and Antimalarial Effects. J. Med. Chem. 2006, 49, 5300–5308. DOI: 10.1021/jm0602763. (b) Milner, E.; Gardner, S.; Moon, J.; Grauer, K.; Auschwitz, J.; Bathurst, I.; Caridha, D.; Gerena, L.; Gettayacamin, M.; Johnson, J.; et al. Structure-Activity Relationships of 4-Position Diamine Quinoline Methanols as Intermittent Preventative Treatment (IPT) against Plasmodium falciparum. J. Med. Chem. 2011, 54, 6277–6285. DOI: 10.1021/jm200647u.
  • (a) Thomas, K. D.; Adhikari, A. V.; Shetty, N. S. Design, Synthesis and Antimicrobial Activities of Some New Quinoline Derivatives Carrying 1,2,3-Triazole Moiety. Eur. J. Med. Chem. 2010, 45, 3803–3810. DOI: 10.1016/j.ejmech.2010.05.030. (b) Xia, L.; Idhayadhulla, A.; Lee, Y. R.; Kim, S. H.; Wee, Y. Microwave-Assisted Synthesis of Diverse Pyrrolo[3,4-c]Quinoline- 1,3-Diones and Their Antibacterial Activities. ACS Comb. Sci. 2014, 16, 333–341. DOI: 10.1021/co500002s.
  • (a) Chan, S. H.; Chui, C. H.; Chan, S. W.; Kok, S. H. L.; Chan, D.; Tsoi, M. Y. T.; Leung, P. H. M.; Lam, A. K. Y.; Chan, A. S. C.; Lam, K. H.; et al. Synthesis of 8-Hydroxyquinoline Derivatives as Novel Antitumor Agents. ACS Med. Chem. Lett. 2013, 4, 170–174. DOI: 10.1021/ml300238z. (b) Duan, Z.; Li, X.; Huang, H.; Yuan, W.; Zheng, S.; Liu, X.; Zhang, Z.; Choy, E.; Harmon, D.; Mankin, H.; et al. Synthesis and Evaluation of (2-(4-Methoxyphenyl)-4-Quinolinyl)(2-Piperidinyl)Methanol (NSC23925) Isomers to Reverse Multidrug Resistance in Cancer. J. Med. Chem. 2012, 55, 3113–3121. DOI: 10.1021/jm300117u. (c) Sun, J.; Zhu, H.; Yang, Z.; Zhu, H. Synthesis, Molecular Modeling and Biological Evaluation of 2-Aminomethyl-5-(Quinolin-2-yl)-1,3,4-Oxadiazole-2(3H)-Thione Quinolone Derivatives as Novelanticancer Agent. Eur. J. Med. Chem. 2013, 60, 23–28. DOI: 10.1016/j.ejmech.2012.11.039.
  • (a) Guerrero, M.; Urbano, M.; Kim, E. K.; Gamo, A. M.; Riley, S.; Abgaryan, L.; Leaf, N.; Van Orden, L. J.; Brown, S. J.; Xie, J. Y.; et al. Design and Synthesis of a Novel and Selective Kappa Opioid Receptor (KOR) Antagonist (BTRX-335140). J. Med. Chem. 2019, 62, 1761–1780. DOI: 10.1021/acs.jmedchem.8b01679. (b) Madak, J. T.; Cuthbertson, C. R.; Miyata, Y.; Tamura, S.; Petrunak, E. M.; Stuckey, J. A.; Han, Y.; He, M.; Sun, D.; Showalter, H. D.; Neamati, N. Design, Synthesis, and Biological Evaluation of 4-Quinoline Carboxylic Acids as Inhibitors of Dihydroorotate Dehydrogenase. J. Med. Chem. 2018, 61, 5162–5186. DOI: 10.1021/acs.jmedchem.7b01862.
  • (a) Boa, A. N.; Canavan, S. P.; Hirst, P. R.; Ramsey, C.; Stead, A. M. W.; McConkey, G. A. Synthesis of Brequinar Analogue Inhibitors of Malaria Parasite Dihydroorotate Dehydrogenase. Bioorgan. Med. Chem. 2005, 13, 1945–1967. DOI: 10.1016/j.bmc.2005.01.017. (b) Huang, H.; Jiang, H.; Chen, K.; Liu, H. A Simple and Convenient Copper-Catalyzed Tandem Synthesis of Quinoline-2-Carboxylates at Room Temperature. J. Org. Chem. 2009, 74, 5476–5480. DOI: 10.1021/jo901101v. (c) Jia, X.; Lü, S.; Yuan, Y.; Zhang, X.; Zhang, L.; Luo, L. A Dual Removable Activating Group Enabled Povarov Reaction of N-Arylalanine Esters: Synthesis of Quinoline-4-Carboxylate Esters. Org. Biomol. Chem. 2017, 15, 2931–2937. DOI: 10.1039/C7OB00446J.
  • (a) Sajjadi-Ghotbabadi, H.; Javanshir, S.; Rostami-Charati, F. Nano KF/Clinoptilolite: An Effective Heterogeneous Base Nanocatalyst for Synthesis of Substituted Quinolines in Water. Catal. Lett. 2016, 146, 338–344. DOI: 10.1007/s10562-015-1652-y. (b) Lu, L.; Zhou, P.; Hu, B.; Li, X.; Huang, R.; Yu, F. An Improved Pfitzinger Reaction: Eco-Efficient Synthesis of Quinaldine-4-Carboxylates by TMSCl-Mediated. Tetrahedron Lett. 2017, 58, 3658–3661. DOI: 10.1016/j.tetlet.2017.08.014. (c) Zhou, P.; Hu, B.; Wang, Y.; Zhang, Q.; Li, X.; Yan, S.; Yu, F. Convenient Synthesis of Quinoline-4-Carboxylate Derivatives through the Bi(OTf)3-Catalyzed Domino Cyclization/Esterification Reaction of Isatins with Enaminones in Alcohols. Eur. J. Org. Chem. 2018, 2018, 4527–4535. DOI: 10.1002/ejoc.201800734. (d) Zhou, P.; Hu, B.; Zhao, S.; Zhang, Q.; Wang, Y.; Li, X.; Yu, F. An Improved Pfitzinger Reaction for the Direct Synthesis of Quinoline-4-Carboxylic Esters/Acids Mediated by TMSCl. Tetrahedron Lett. 2018, 59, 3116–3119. DOI: 10.1016/j.tetlet.2018.07.006. (e) Afkham, A. A.; Mokhtari, J.; Haghighi, A. J.; Yavari, I. An Unexpected Synthesis of 2,3,4-Trisubstituted Quinolines from Imino-Isatin and Acetylenic Esters Catalyzed by Pyridine as an Organocatalyst. ChemistrySelect 2018, 3, 9159–9161. DOI: 10.1002/slct.201801785. (f) Mal, K.; Chatterjee, S.; Bhaumik, A.; Mukhopadhyay, C. Mesoporous MCM‐41 Silica Supported Pyridine Nanoparticle: A Highly Efficient Recyclable Catalyst for Expeditious Synthesis of Quinoline Derivatives through Domino Approach. Chemistryselect 2019, 4, 1776–1784. DOI: 10.1002/slct.201803708. (g) Zhou, X.; Chen, X.; Wang, L. Highly Efficient Brønsted Acid and Lewis Acid Catalysis Systems for the Friedländer Quinoline Synthesis. Synth. Commun. 2018, 48, 830–837. DOI: 10.1080/00397911.2018.1428346. (h) Xia, X.; Zhang, G.; Wang, D.; Zhu, S. Visible-Light Induced and Oxygen-Promoted Oxidative Cyclization of Aromatic Enamines for the Synthesis of Quinolines Derivatives. J. Org. Chem. 2017, 82, 8455–8463. DOI: 10.1021/acs.joc.7b01206. (i) Zheng, J.; Li, Z.; Huang, L.; Wu, W.; Li, J.; Jiang, H. Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. Org. Lett. 2016, 18, 3514–3517. DOI: 10.1021/acs.orglett.6b01008. (j) Xu, X.; Yang, Y.; Zhang, X.; Yi, W. Direct Synthesis of Quinolines via Co(III)-Catalyzed and DMSOInvolved C-H Activation/Cyclization of Anilines with Alkynes. Org. Lett. 2018, 20, 566–569. DOI: 10.1021/acs.orglett.7b03673. (k) Hu, W.; Yang, W.; Yan, T.; Cai, M. An Efficient Heterogeneous Gold(I)-Catalyzed Intermolecular Cycloaddition of 2-Aminoaryl Carbonyls and Internal Alkynes Leading to Polyfunctionalized Quinolines. Synth. Commun. 2019, 49, 799–813. DOI: 10.1080/00397911.2019.1567788.
  • (a) Pfitzinger, W. Chinolinderivate Aus Isatinsaure. J. Prakt. Chem. 1886, 33, 100–100. DOI: 10.1002/prac.18850330110. (b) Shvekhgeimer, M. G.-A. The Pfitzinger Reaction (Review). Chem Heterocycl Com. 2004, 40, 257–294. DOI: 10.1023/B:COHC.0000028623.41308.e5.
  • Gök, D.; Kasımoğulları, R.; Cengiz, M.; Mert, S. Utility of the Pfitzinger Reaction in the Synthesis of Novel Quinoline Derivatives and Related Heterocycles. J. Heterocyclic Chem. 2014, 51, 224–232. DOI: 10.1002/jhet.1607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.