Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 1
201
Views
6
CrossRef citations to date
0
Altmetric
Articles

Seralite SRC-120 resin catalyzed synthesis of bis(indolyl)methanes using indoles and low/high boiling point carbonyl compounds under solvent free conditions

, , , &
Pages 139-150 | Received 25 Aug 2020, Published online: 26 Nov 2020

References

  • (a) Thomson, C. A.; Ho, E.; Strom, M. B. Chemopreventive Properties of 3,3′-Diindolylmethane in Breast Cancer: Evidence from Experimental and Human Studies. Nutr. Rev. 2016, 74, 432–443. DOI: 10.1093/nutrit/nuw010. (b) Chevolleau, S.; Debrauwer, L.; Boyer, G.; Tulliez, J. Isolation and Structure Elucidation of a New Thermal Breakdown Product of Glucobrassicin, the Parent Indole Glucosinolate. J. Agric. Food Chem. 2002, 50, 5185–5190. DOI: 10.1021/jf020125i.
  • Kamata, K.; Suetsugu, T.; Yamamoto, Y.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Bisindole Alkaloids from Myxomycetes Arcyria denudata and Arcyria obvelata. J. Nat. Prod. 2006, 69, 1252–1254. DOI: 10.1021/np060269h.
  • Bell, R.; Carmeli, S.; Sar, N. Vibrindole A, a Metabolite of the Marine Bacterium, Vibrio parahaemolyticus, Isolated from the Toxic Mucus of the Boxfish Ostracion cubicus. J. Nat. Prod. 1994, 57, 1587–1590. DOI: 10.1021/np50113a022.
  • Cai, S.-X.; Li, D.-H.; Zhu, T.-J.; Wang, F.-P.; Xiao, X.; Gu, Q.-Q. Two New Indole Alkaloids from the Marine-Derived Bacterium Aeromonas sp. CB101. HCA. 2010, 93, 791–795. DOI: 10.1002/hlca.200900360.
  • Nettleton, D. E.; Doyle, T. W.; Krishnan, B.; Matsumoto, G. K.; Clardy, J. Isolation and Structure of Rebeccamycin – A New Antitumor Antibiotic from Nocardia aerocoligenes. Tetrahedron Lett. 1985, 26, 4011–4014. DOI: 10.1016/S0040-4039(00)89280-1.
  • Zhou, B.; Hu, Z.-J.; Zhang, H.-J.; Li, J.-Q.; Ding, W.-J.; Ma, Z.-J. Bioactive Staurosporine Derivatives from the Streptomyces sp. NB-A13. Bioorg. Chem. 2019, 82, 33–40. DOI: 10.1016/j.bioorg.2018.09.016.
  • (a) Nayak, D.; Amin, H.; Rah, B.; Ur Rasool, R.; Sharma, D.; Gupta, A. P.; Kushwaha, M.; Mukherjee, D.; Goswami, A. A Therapeutically Relevant, 3,3′-Diindolylmethane Derivative NGD16 Attenuates Angiogenesis by Targeting Glucose Regulated Protein, 78kDa (GRP78). Chem. Biol. Interact. 2015, 232, 58–67. DOI: 10.1016/j.cbi.2015.03.008. (b) Katoch, A.; Suklabaidya, S.; Chakraborty, S.; Nayak, D.; Rasool, R. U.; Sharma, D.; Mukherjee, D.; Faheem, M. M.; Kumar, A.; Sharma, P. R.; et al. Dual Role of Par-4 in Abrogation of EMT and Switching on Mesenchymal to Epithelial Transition (MET) in Metastatic Pancreatic Cancer Cells. Mol. Carcinog. 2018, 57, 1102–1115. DOI: 10.1002/mc.22828.
  • Bharate, S. B.; Bharate, J. B.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Mudududdla, R.; Yadav, R. R.; Singh, B.; Sharma, P. R.; Maity, S.; et al. Discovery of 3,3′-Diindolylmethanes as Potent Antileishmanial Agents. Eur. J. Med. Chem. 2013, 63, 435–443. DOI: 10.1016/j.ejmech.2013.02.024.
  • Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Sarkar, F. H. Antioxidant Function of Isoflavone and 3,3′-Diindolylmethane: Are They Important for Cancer Prevention and Therapy? Antioxid. Redox Signal. 2013, 19, 139–150. DOI: 10.1089/ars.2013.5233.
  • Sharma, D. K.; Tripathi, A. K.; Sharma, R.; Chib, R.; Ur Rasool, R.; Hussain, A.; Singh, B.; Goswami, A.; Khan, I. A.; Mukherjee, D. A New Class of Bactericidal Agents against S. aureus, MRSA and VRE Derived from Bisindolylmethane. Med. Chem. Res. 2014, 23, 1643–1653. DOI: 10.1007/s00044-013-0764-4.
  • Cho, H. J.; Seon, M. R.; Lee, Y. M.; Kim, J.; Kim, J. K.; Kim, S. G.; Park, J. H. 3,3′-Diindolylmethane Suppresses the Inflammatory Response to Lipopolysaccharide in Murine Macrophages. J. Nutr. 2008, 138, 17–23. DOI: 10.1093/jn/138.1.17.
  • (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. DOI: 10.1021/cr900195a. (b) Palmieri, A.; Petrini, M. Synthesis 2019, 51, 829–841. DOI: 10.1055/s-0037-1610349. (c) Singh, A.; Kaur, G.; Banerjee, B. Recent Developments on the Synthesis of Biologically Significant Bis/Tris(Indolyl)Methanes under Various Reaction Conditions: A Review. Curr. Org. Chem. 2020, 24, 583–621. DOI: 10.2174/1385272824666200228092752.
  • (a) Babu, G.; Sridhar, N.; Perumal, P. T. A Convenient Method of Synthesis of Bis -Indolylmethanes: Indium Trichloride Catalyzed Reactions of Indole with Aldehydes and Schiff's Bases. Synth. Commun. 2000, 30, 1609–1614. DOI: 10.1080/00397910008087197. (b) Ma, Z.-H.; Han, H.-B.; Zhou, Z.-B.; Nie, J. SBA-15-Supported Poly(4-Styrenesulfonyl(Perfluorobutylsulfonyl)Imide) as Heterogeneous Brønsted Acid Catalyst for Synthesis of Diindolylmethane Derivatives. J. Mol. Catal. A: Chem. 2009, 311, 46–53. DOI: 10.1016/j.molcata.2009.06.021. (c) Bandgar, B. P.; Shaikh, K. A. Molecular Iodine-Catalyzed Efficient and Highly Rapid Synthesis of Bis(Indolyl)Methanes under Mild Conditions. Tetrahedron Lett. 2003, 44, 1959–1961. DOI: 10.1016/S0040-4039(03)00032-7. (d) Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Facile Synthesis of Bis(Indolyl)Methanes Using Catalytic Amount of Iodine at Room Temperature under Solvent-Free Conditions. Tetrahedron 2004, 60, 2051–2055. DOI: 10.1016/j.tet.2003.12.060. (e) Ganguly, N. C.; Mondal, P.; Barik, S. K. Iodine in Aqueous Micellar Environment: A Mild Effective Ecofriendly Catalytic System for Expedient Synthesis of Bis(Indolyl)Methanes and 3-Substituted Indolyl Ketones. Green Chem. Lett. Rev. 2012, 5, 73–81. DOI: 10.1080/17518253.2011.581700. (f) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Liu, W.; Ma, B.; Bi, S.; Zhan, H.; Chen, X. Synthesis of Bis(Indolyl)Methanes under Dry Grinding Conditions, Promoted by a Lewis Acid–Surfactant–SiO 2-Combined Nanocatalyst. Green Chem. 2019, 21, 3542–3546. DOI: 10.1039/C9GC01073D. (g) Deb, M. L.; Pegu, C. D.; Deka, B.; Dutta, P.; Kotmale, A. S.; Baruah, P. K. Brønsted-Acid-Mediated Divergent Reactions of Betti Bases with Indoles: An Approach to Chromeno[2,3- b ]Indoles through Intramolecular Dehydrogenative C2-Alkoxylation of Indole. Eur. J. Org. Chem. 2016, 2016, 3441–3448. DOI: 10.1002/ejoc.201600546. (h) He, Y.-Y.; Sun, X.-X.; Li, G.-H.; Mei, G.-J.; Shi, F. Substrate-Controlled Regioselective Arylations of 2-Indolylmethanols with Indoles: Synthesis of Bis(Indolyl)Methane and 3,3′-Bisindole Derivatives. J. Org. Chem. 2017, 82, 2462–2471. DOI: 10.1021/acs.joc.6b02850. (i) Liu, J.-X.; Zhu, Z.-Q.; Yu, L.; Du, B.-X.; Mei, G.-J.; Shi, F. Synthesis 2018, 50, 3436–3444. DOI: 10.1055/s-0037-1609732.
  • (a) Niknam, K.; Zolfigol, M. A.; Sadabadi, T.; Nejati, A. Preparation of Indolylmethanes Catalyzed by Metal Hydrogen Sulfates. J. Iran. Chem. Soc. 2006, 3, 318–322. DOI: 10.1007/BF03245953. (b) Zhang, Y.; Zhang, S.-X.; Fu, L.-N.; Guo, Q.-X. Highly Efficient Atom-Economic Synthesis of Chiral Bis(Indolyl)Methanes Bearing Quaternary Stereogenic Carbon Centers. Chem. Cat. Chem 2017, 9, 3107–3110. DOI: 10.1002/cctc.201700368. (c) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chiral Phosphoric Acid Catalysis: From Numbers to Insights. Chem. Soc. Rev. 2018, 47, 1142–1158. DOI: 10.1039/C6CS00475J. (d) Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antilla, J. C. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Hetero-Triarylmethanes from Racemic Indolyl Alcohols. Angew. Chem. Int. Ed. Engl. 2018, 57, 11004–11008. DOI: 10.1002/anie.201804330. (e) Abe, H.; Takeuchi, Y.; Maeda, K.; Matsukihira, T.; Saga, S.; Harayama, T.; Horino, Y. Regioselectivity of the Intramolecular Biaryl Coupling Reaction of 3-Substituted Phenyl 2-Iodobenzoate Using a Palladium Reagent. Heterocycles 2014, 88, 621–191. DOI: 10.3987/COM-13-S(S)31.
  • (a) Fekri, L. Z.; Nikpassand, M.; Kohansal, M. Fe + 3-Montmorillonite K10, as Effective, Eco-Friendly, and Reusable Catalyst for the Synthesis of Bis(1H-Indol-3-yl)Methanes under Grinding Condition. Russ. J. Gen. Chem. 2015, 85, 2861–2866. DOI: 10.1134/S1070363215120361. (b) Karthik, M.; Tripathi, A. K.; Gupta, N. M.; Palanichamy, M.; Murugesan, V. Zeolite Catalyzed Electrophilic Substitution Reaction of Indoles with Aldehydes: synthesis of Bis(Indolyl)Methanes. Catal. Commun. 2004, 5, 371–375. DOI: 10.1016/j.catcom.2004.04.007.
  • (a) Wang, X.; Aldrich, C. C. Development of an Imidazole Salt Catalytic System for the Preparation of Bis(Indolyl)Methanes and Bis(Naphthyl)Methane. PLoS One 2019, 14, e0216008. DOI: 10.1371/journal.pone.0216008. (b) Koshima, H.; Matsusaka, W. N -Bromosuccinimide Catalyzed Condensations of Indoles with Carbonyl Compounds under Solvent-Free Conditions. J. Heterocycl. Chem. 2002, 39, 1089–1091. DOI: 10.1002/jhet.5570390539. (c) Liu, X.; Ma, S.; Toy, P. H. Halogen Bond-Catalyzed Friedel-Crafts Reactions of Aldehydes and Ketones Using a Bidentate Halogen Bond Donor Catalyst: Synthesis of Symmetrical Bis(indolyl)methanes. Org. Lett. 2019, 21, 9212–9216. DOI: 10.1021/acs.orglett.9b03578. (d) Auvil, T. J.; So, S. S.; Mattson, A. E. Arylation of Diazoesters by a Transient N-H Insertion Organocascade. Angew. Chem. Int. Ed. Engl. 2013, 52, 11317–11320. DOI: 10.1002/anie.201304921.
  • (a) Baig, N.; Shelke, G. M.; Kumar, A.; Sah, A. K. Selective Synthesis of Bis(Indolyl)Methanes under Solvent Free Condition Using Glucopyranosylamine Derived cis-Dioxo Mo(VI) Complex as an Efficient Catalyst. Catal. Lett. 2016, 146, 333–337. DOI: 10.1007/s10562-015-1648-7. (b) Li, D.; Wu, T.; Liang, K.; Xia, C. Curtius-like Rearrangement of an Iron-Nitrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes. Org. Lett. 2016, 18, 2228–2231. DOI: 10.1021/acs.orglett.6b00864. (c) Lu, Q.; Cembellín, S.; Greßies, A.; Singha, S.; Daniliuc, C. G.; Glorius, F. Manganese(I)-Catalyzed C-H (2-Indolyl)Methylation: Expedient Access to Diheteroarylmethanes. Angew. Chem. Int. Ed. Engl. 2018, 57, 1399–1403. DOI: 10.1002/anie.201710060.
  • (a) Yadav, J. S.; Reddy, B. V. S.; Sunitha, S. Efficient and Eco-Friendly Process for the Synthesis of Bis(1H-Indol-3-yl)Methanes Using Ionic Liquids. Adv. Synth. Catal. 2003, 345, 349–352. DOI: 10.1002/adsc.200390038. (b) Das, P. J.; Das, J. Synthesis of Aryl/Alkyl(2,2′-Bis-3-Methylindolyl)Methanes and Aryl(3,3′-Bis Indolyl)Methanes Promoted by Secondary Amine Based Ionic Liquids and Microwave Irradiation. Tetrahedron Lett. 2012, 53, 4718–4720. DOI: 10.1016/j.tetlet.2012.06.106. (c) Choudhary, S.; Pandey, K.; Budania, S.; Kumar, A. Functionalized Ionic Liquid-Assisted Chromatography-Free Synthesis of Bis(Indolyl)Methanes. Mol. Divers. 2017, 21, 155–162. DOI: 10.1007/s11030-016-9713-8.
  • (a) Azizi, N.; Gholibeghlo, E.; Manocheri, Z. Green Procedure for the Synthesis of Bis(Indolyl)Methanes in Water. Sci. Iran 2012, 19, 574–578. DOI: 10.1016/j.scient.2011.11.043. (b) Pillaiyar, T.; Gorska, E.; Schnakenburg, G.; Müller, C. E. General Synthesis of Unsymmetrical 3,3′-(Aza)Diindolylmethane Derivatives. J. Org. Chem. 2018, 83, 9902–9913. DOI: 10.1021/acs.joc.8b01349. (c) Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y. Catalyst-Free Dehydrative S N 1-Type Reaction of Indolyl Alcohols with Diverse Nucleophiles “on Water.” Green Chem. 2016, 18, 1032–1037. DOI: 10.1039/C5GC01838B. (d) Gao, G.; Han, Y.; Zhang, Z. H. Catalyst Free Synthesis of Bis(Indolyl)Methanes and 3,3-Bis(Indolyl)Oxindoles in Aqueous Ethyl Lactate. ChemistrySelect 2017, 2, 11561–11564. DOI: 10.1002/slct.201702326. (e) Das, A. K.; Sepay, N.; Nandy, S.; Ghatak, A.; Bhar, S. Catalytic Efficiency of β-Cyclodextrin Hydrate-Chemoselective Reaction of Indoles with Aldehydes in Aqueous Medium. Tetrahedron Lett. 2020, 61, 152231–152237. DOI: 10.1016/j.tetlet.2020.152231. (f) Zhao, Y.-S.; Ruan, H.-L.; Wang, X.-Y.; Chen, C.; Song, P.-F.; Lu, C. W.; Zou, L.-W. Catalyst-Free Visible-Light-Induced Condensation to Synthesize Bis(Indolyl)Methanes and Biological Activity Evaluation of Them as Potent Human Carboxylesterase 2 Inhibitors. RSC Adv. 2019, 9, 40168–40175. DOI: 10.1039/C9RA08593A.
  • Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Visible Light-Induced Aerobic Oxidative Cross-Coupling of Glycine Derivatives with Indoles: A Facile Access to 3,3′ Bisindolylmethanes. Org. Chem. Front. 2018, 5, 2120–2125. DOI: 10.1039/C8QO00341F.
  • Yang, T.; Lu, H.; Shu, Y.; Ou, Y.; Hong, L.; Au, C.-T.; Qiu, R. CF3SO2Na-Mediated, UV-Light-Induced Friedel-Crafts Alkylation of Indoles with Ketones/Aldehydes and Bioactivities of Products. Org. Lett. 2020, 22, 827–831. DOI: 10.1021/acs.orglett.9b04272.
  • Sharma, D. K.; Hussain, A.; Lambu, M. R.; Yousuf, S. K.; Maiety, S.; Singh, B.; Mukherjee, D. Fe/Al Pillared Clay Catalyzed Solvent-Free Synthesis of Bisindolylmethanes Using Diversely Substituted Indoles and Carbonyl Compounds. RSC Adv. 2013, 3, 2211–2215. DOI: 10.1039/c2ra22258b.
  • Kalla, R. M. N.; Hong, S. C.; Kim, I. Synthesis of Bis(Indolyl)Methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts. ACS Omega. 2018, 3, 2242–2253. DOI: 10.1021/acsomega.7b01925.
  • Sharma, D. K.; Rah, B.; Lambu, M. R.; Hussain, A.; Yousuf, S. K.; Tripathi, A. K.; Singh, B.; Jamwal, G.; Ahmed, Z.; Chanauria, N.; et al. Design and Synthesis of Novel N,N′-Glycoside Derivatives of 3,3′-Diindolylmethanes as Potential Antiproliferative Agents. Med. Chem. Commun. 2012, 3, 1082–1091. DOI: 10.1039/c2md20098h.
  • (a) Pokhrel, R.; Ghosh, D.; Jha, S.; Bhattacharyya, N. K.; Jha, S. Silica Supported Synthesis of Bis(Indolyl) Methane Derivatives under Microwave Irradiation. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 03, 15666–15671. DOI: 10.15680/IJIRSET.2014.0308079. (b) Pal, R. Int. J. Chemtech App. 2013, 2, 26–40.
  • Priecel, P.; Lopez-Sanchez, J. A. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals. ACS Sustainable Chem. Eng. 2019, 7, 3–21. DOI: 10.1021/acssuschemeng.8b03286.
  • Yadav, V.; Maity, S.; Biswas, P.; Singh, R. K. Chem. Biochem. Eng. Q. 2011, 25, 359–366.
  • Pande, S.; Saha, A.; Jana, S.; Sarkar, S.; Basu, M.; Pradhan, M.; Sinha, A. K.; Saha, S.; Pal, A.; Pal, T. Resin-Immobilized CuO and Cu Nanocomposites for Alcohol Oxidation. Org. Lett. 2008, 10, 5179–5181. DOI: 10.1021/ol802040x.
  • Sahoo, S. K.; Khandelwal, V.; Manik, G. Development of Toughened Bio-Based Epoxy with Epoxidized Linseed Oil as Reactive Diluent and Cured with Bio-Renewable Crosslinker. Polym. Adv. Technol. 2018, 29, 565–574. DOI: 10.1002/pat.4166.
  • Cheng, Y.; Ou, X.; Ma, J.; Sun, L.; Ma, Z.-H. A New Amphiphilic Brønsted Acid as Catalyst for the Friedel-Crafts Reactions of Indoles in Water. Eur. J. Org. Chem. 2019, 2019, 66–72. DOI: 10.1002/ejoc.201801612.
  • Ren, Y.-M.; Xu, M.-D.; Wang, X. PEG1000-Based Dicationic Acidic Ionic Liquid/Solvent-Free Conditions: An Efficient Catalytic System for the Synthesis of Bis(Indolyl)Methanes. Catalysts. 2017, 7, 300–305. DOI: 10.3390/catal7100300.
  • Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K. L.; Bhattacharyya, K.; Ravikumar, P. C.; Krishnan, V. Nanocomposite of MoS 2 -RGO as Facile, Heterogeneous, Recyclable, and Highly Efficient Green Catalyst for One-Pot Synthesis of Indole Alkaloids. ACS Sustainable. Chem. Eng. 2017, 5, 8551–8567. DOI: 10.1021/acssuschemeng.7b00648.
  • Noland, W. E.; Kumar, H. V.; Flick, G. C.; Aspros, C. L.; Yoon, J. H.; Wilt, A. C.; Dehkordi, N.; Thao, S.; Schneerer, A. K.; Gao, S.; Tritch, K. J. Hydrated Ferric Sulfate-Catalyzed Reactions of Indole with Aldehydes, Ketones, Cyclic Ketones, and Chromanones: Synthesis of Bisindoles and Trisindoles. Tetrahedron. 2017, 73, 3913–3922. DOI: 10.1016/j.tet.2017.05.061.
  • Siadatifard, S. H.; Abdoli-Senejani, M.; Bodaghifard, M. A. Cogent. Chem. 2016, 2, 1188435. DOI: 10.1080/23312009.2016.1188435.
  • Ying, A.; Li, Z.; Ni, Y.; Xu, S.; Hou, H.; Hu, H. Novel Multiple-Acidic Ionic Liquids: Green and Efficient Catalysts for the Synthesis of Bis-Indolylmethanes under Solvent-Free Conditions. J. Ind. Eng. Chem. 2015, 24, 127–131. DOI: 10.1016/j.jiec.2014.09.019.
  • Kamble, S. B.; Swami, R. K.; Sakate, S. S.; Rode, C. V. Highly Efficient Povidone-Phosphotungstic Acid Catalyst for the Tandem Acetalization of Aldehydes to Bis- and Tris(Indolyl)Methanes. Chempluschem. 2013, 78, 1393–1399. DOI: 10.1002/cplu.201300248.
  • Liang, D.; Huang, W.; Yuan, L.; Ma, Y.; Ma, J.; Ning, D. An Underrated Cheap Lewis Acid: Molecular Bromine as a Robust Catalyst for Bis(Indolyl)Methanes Synthesis. Catal. Commun. 2014, 55, 11–14. DOI: 10.1016/j.catcom.2014.06.005.
  • Xu, X.-F.; Xiong, Y.; Ling, X.-G.; Xie, X.-M.; Yuan, J.; Zhang, S.-T.; Song, Z.-R. A Practical Synthesis of Bis(Indolyl)Methanes Catalyzed by BF3·Et2O. Chin. Chem. Lett. 2014, 25, 406–410. DOI: 10.1016/j.cclet.2013.11.038.
  • Hojati, S. F.; Zeinali, T.; Nematdoust, Z. A Novel Method for Synthesis of Bis(Indolyl)Methanes Using 1,3-Dibromo-5,5-Dimethylhydantoin as a Highly Efficient Catalyst under Solvent-Free Conditions. Bull. Korean Chem. Soc. 2013, 34, 117–120. DOI: 10.5012/bkcs.2013.34.1.117.
  • Huo, C. D.; Sun, C.; Wang, C.; Jia, X.; Chang, W. Triphenylphosphine- m -Sulfonate/Carbon Tetrabromide as an Efficient and Easily Recoverable Catalyst System for Friedel–Crafts Alkylation of Indoles with Carbonyl Compounds or Acetals. ACS Sustainable Chem. Eng. 2013, 1, 549–553. DOI: 10.1021/sc400033t.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.