Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 5
225
Views
3
CrossRef citations to date
0
Altmetric
Articles

Efficient catalyst free green synthesis and in vitro antimicrobial, antioxidant and molecular docking studies of α-substituted aromatic/heteroaromatic aminomethylene bisphosphonates

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 747-764 | Received 19 Sep 2020, Published online: 09 Dec 2020

References

  • Chmielewska, E.; Kafarski, P. Physiologic Activity of Bisphosphonates – Recent Advances. Pharmscience. 2016, 3, 56–78. DOI: 10.2174/1874844901603010056.
  • Iguchi, K.; Tatsuda, Y.; Usui, S.; Hirano, K. Pamidronate Inhibits Antiapoptotic Bcl-2 Expression through Inhibition of the Mevalonate Pathway in Prostate Cancer PC-3 Cells. Eur. J. Pharmacol. 2010, 1, 35–40. DOI: 10.1016/j.ejphar.2010.05.010.
  • Mohan, G.; Santhisudha, S.; Reddy, N. M.; Sreekanth, T.; Murali, S.; Cirandur, S. R. Nano ZnO Catalyzed Green Synthesis and Cytotoxic Assay of Pyridinyl and Pyrimidinyl Bisphosphonates. Monatsh. Chem. 2017, 148, 1843–1851. DOI: 10.1007/s00706-017-2000-2..
  • Sudileti, M.; Nagaripati, S.; Gundluru, M.; Chintha, V.; Aita, S.; Wudayagiri, R.; Chamarthi, N.; Cirandur, S. R. rGO-SO3H Catalysed Green Synthesis of Fluoro Subsutituted Aminomethylene Bisphosphonates and Their anti-Cancer, Molecular Docking Studies. ChemistrySelect. 2019, 4, 13006–13011. DOI: 10.1002/slct.201903191.
  • Garay, T.; Kenessey, I.; Molnár, E. Prenylation Inhibition-Induced Cell Death in Melanoma: Reduced Sensitivity in BRAF Mutant/PTEN Wild-Type Melanoma Cells. PLOS One. 2015, 2, 753–764. DOI: 10.1371/journal.pone.0117021.
  • Rennert, G.; Rennert, H. S.; Pinchev, M.; Lavie, O. The Effect of Bisphosphonates on the Risk of Endometrial and Ovarian Malignancies. Gynecol. Oncol. 2014, 2, 309–313. DOI: 10.1016/j.ygyno.2014.02.014.
  • Notarnicola, M.; Messa, C.; Cavallini, A.; Bifulco, M.; Tecce, M. F.; Eletto, D.; Di Leo, A.; Montemurro, S.; Laezza, C.; Caruso, M. G. Higher Farnesyl Diphosphate Synthase Activity in Human Colorectal Cancer Inhibition of Cellular Apoptosis. Oncology. 2004, 67, 351–358. DOI: 10.1159/000082918.
  • Cimini, E.; Piacentini, P.; Sacchi, A. Zoledronic Acid Enhances Vδ2 T-Lymphocyte Antitumor Response to Human Glioma Cell Lines. Int. J. Immunopathol. Pharmacol. 2011, 1, 139–148. DOI: 10.1177/039463201102400116.
  • Terpos, E.; Roodman, G. D.; Dimopoulos, M. A. Optimal Use of Bisphosphonates in Patients with Multiple Myeloma. Blood. 2013, 17, 3325–3328. DOI: 10.1182/blood-2012-10-435750.
  • Feasey, N.; Wansbrough-Jones, M.; Mabey, D. C.; Solomon, A. W. Neglected Tropical Diseases. Br. Med. Bull. 2010, 1, 179–200. DOI: 10.1093/bmb/ldp046.
  • Cohen, J. M.; Smith, D. L.; Cotter, C.; Ward, A.; Yamey, G.; Sabot, O. J.; Moonen, B. Malaria Resurgence: A Systematic Review and Assessment of Its Causes. Malar. J. 2012, 11, 122. DOI: 10.1186/1475-2875-11-122.
  • Shang, N.; Li, Q.; Ko, T. P. Squalene Synthase as a Target for Chagas Disease Therapeutics. PLOS Pathog. 2014, 5–1004114. DOI: 10.1371/journal.ppat.1004114..
  • Docampo, R.; Moreno, S. N. The Acidocalcisome as a Target for Chemotherapeutic Agents in Protozoan Parasites. Curr. Pharm. Des. 2008, 9, 882–888. DOI: 10.2174/138161208784041079.
  • Nuttall, J. M.; Hettema, E. H.; Watts, D. J. Farnesyl Diphosphate Synthase, the Target for Nitrogen-Containing Bisphosphonate Drugs, is a Peroxisomal Enzyme in the Model System Dictyostelium Discoideum. Biochem. J. 2012, 3, 353–361. DOI: 10.1042/BJ20120750.
  • Chan, H. C.; Feng, X.; Ko, T. P. Structure and Inhibition of Tuberculosinol Synthase and Decaprenyl Diphosphate Synthase from Mycobacterium Tuberculosis. J. Am. Chem. Soc. 2014, 7, 2892–2896. DOI: 10.1021/ja413127v.
  • Forlani, G.; Petrollino, D.; Fusetti, M. Δ1-Pyrroline-5-Carboxylate Reductase as a New Target for Therapeutics: Inhibition of the Enzyme from Streptococcus Pyogenes and Effects In Vivo. Amino Acids. 2012, 6, 2283–2291. DOI: 10.1007/s00726-011-0970-7.
  • Pherson, J. C.; Runner, R.; Buxton, T. B. Synthesis of Osteotropic Hydroxybisphosphonate Derivatives of Fluoroquinolone Antibacterials. Eur. J. Med. Chem. 2012, 1, 615–618. DOI: 10.1016/j.ejmech.2011.10.049.
  • Lacbay, C. M.; Mancuso, J.; Lin, Y. S.; Bennett, N.; Gotte, M.; Tsantrizos, Y. S. Modular Assembly of Purine-like Bisphosphonates as Inhibitors of HIV-1 Reverse Transcriptase. J. Med. Chem. 2014, 17, 7435–7449. DOI: 10.1021/jm501010f.
  • Song, Y.; Chan, J. M.; Tovian, Z. Bisphosphonate Inhibitors of ATP-Mediated HIV-1 Reverse Transcriptase Catalyzed Excision of Chainterminating 3′-Azido, 3′-Deoxythymidine: A QSAR Investigation. Bioorg. Med. Chem. 2008, 19, 8959–8967. DOI: 10.1016/j.bmc.2008.08.047.
  • Tan, K. S.; Ng, W. C.; Seet, J. E.; Olfat, F.; Engelward, B. P.; Chow, V. T. Investigating the Efficacy of Pamidronate, a Chemical Inhibitor of Farnesyl Pyrophosphate Synthase, in the Inhibition of Influenza Virus Infection In Vitro and In Vivo. Mol. Med. Rep. 2014, 9, 51–56. DOI: 10.3892/mmr.2013.1750.
  • Cromartie, T. H.; Fisher, K. J.; Grossmann, J. N. The Discovery of a Novel Site of Action for Herbicidal Bisphosphonates. Pestic. Biochem. Physiol. 1999, 2, 114–126. DOI: 10.1006/pest.1999.2397.
  • Forlani, G.; Lejczak, B.; Kafarski, P. The Herbicidally Active Compound N-2-(5-Chloro-Pyridyl) Aminomethylene Bisphosphonic Cid Acts by Inhibiting Both Glutamine and Aromatic Amino Acid Biosynthesis. Aust. J. Plant Physiol. 2000, 7, 677–683. DOI: 10.1071/PP00011.
  • Studnik, H.; Liebsch, S.; Forlani, G.; Wieczorek, D.; Kafarski, P.; Lipok, J. Amino Polyphosphonates – Chemical Features and Practical Uses, Environmental Durability and Biodegradation. N Biotechnol. 2015, 32, 1–6. DOI: 10.1016/j.nbt.2014.06.007.
  • Turhanen, P. A.; Vepsalainen, J. J.; Peräniemi, S. Material and Approach for Metal Ions Removal from Aqueous solutions. Sci. Rep. 2015, 5, 27290. DOI: 10.1038/srep08992.
  • Gale˛zowska, J.; Gumienna-Kontecka, E. Phosphonates, Their Complexes and Bio-Applications: A Spectrum of Surprising Diversity. Coord. Chem. Rev. 2012, 256, 105–124. DOI: 10.1016/j.ccr.2011.07.002.
  • Alanne, A. L.; Peraniemi, S.; Turhanen, P.; Tuomainen, M.; Vepsalainen, J.; Tervahauta, A. A Bisphosphonate Increasing the Shoot Biomass of the Metal Hyperaccumulator Noccaea Caerulescens. Chemosphere. 2014, 95, 566–571. DOI: 10.1016/j.chemosphere.2013.09.116.
  • Kieczykowski, G. R.; Jobson, R. B.; Melillo, D. G.; Reinhold, D. F.; Grenda, V. J.; Shinkai, I. Preparation of (4-Amino-1-Hydroxybutylidene) Bisphosphonic acid sodium salt, MK-217(Alendronatesodium). An improved Procedure for the Preparation of 1-Hydroxy-1,1-Bisphosphonic Acids. J. Org. Chem. 1995, 60, 8310–8312. DOI: 10.1021/jo00130a036.
  • Romaneneko, V. D.; Kukhar, V. A. 1-Amino-1,1-Bisphosphonates. Fundamental Syntheses and New Developments. Arch. Org. Chem. 2012, 2012, 127–166. DOI: 10.3998/ark.5550190.0013.411.
  • Srinivasa, R. D. V. N.; Dandala, R.; Lenin, R.; Sivakumaran, N.; Shivashankar, S.; Naidu, A. A Facile Onepot Synthesis of Bisphosphonic Acids and Their Sodium Salts from Nitriles. Arch. Org. Chem. 2007, 2007, 34–38. DOI: 10.3998/ark.5550190.0008.e05.
  • Kaabak, L. V.; Kuz’mina, N. E.; Khudenko, A. V.; Tomilov, A. P. Improved Synthesis of 1-Aminoethylidenediphosphonic Acid. Russ. J. Gen. Chem. 2006, 76, 1673–1674. DOI: 10.1134/S107036320610029X.
  • Midier, C.; Lantsoght, M.; Volle, J. N.; Pirat, J. L.; Virieux, D.; Stevens, C. V. Hydrophosphonylation of Alkenes or Nitriles by Double Radical Transfer Mediated by Titanocene/Propylene Oxide. Tetrahedron Lett. 2011, 52, 6693–6696. DOI: 10.1016/j.tetlet.2011.09.096.
  • Hirai, T.; Han, L. B. Palladium-Catalyzed Insertion of Isocyanides into P(O)–H bonds: Selective Formation of Phosphinoyl Imines and Bisphosphinoyl amino methanes. J. Am. Chem. Soc. 2006, 128, 7422–7423. DOI: 10.1021/ja060984d.
  • Goldemen, W.; Kluczynski, A.; Soroka, M. The Preparation of N Substituted Aminomethylidene Bisphosphonates and Their Tetra Alkyl Esters via Reaction of Isonitriles with Trialkyl Phosphites and Hydrogen Chloride. Part 1. Tetrahedron Lett. 2012, 53, 5290–5292. DOI: 10.1016/j.tetlet.2012.07.085.
  • Crossey, K.; Migaud, M. E. Solventless Synthesis of Acyl Phosphonamidates, Precursors to Masked Bisphosphonates. Chem. Commun. 2015, 51, 11088–11091. DOI: 10.1039/C5CC03549J.
  • Suzuki, F.; Fujikawa, Y.; Yamamoto, S.; Mizutani, H.; Funabashi, C.; Ohya, T.; Ikai, T.; Oguchi, T. Pharmaceutical Compositions Containing Geminal Diphosphonates. US 5583122 A, February 1, 1979.
  • Maier, L. Organishe phosphorverbindungen 75: Herstellung und Eigenschaften von Aminomethylendiphosphinaten und -diphosphonaten, RR1NCH[P(O)R2(OR3)]2 und Derivaten. Phosphorus Sulfur Silicon Relat. Elem. 1981, 11, 311–332. DOI: 10.1080/03086648108077413.
  • Rodriguez, J. B. Tetraethyl Vinylidenebisphosphonate: A Versatile Synthon for the Preparation of Bisphosphonates. Synthesis. 2014, 46, 1129–1142. DOI: 10.1055/s-0033-1340952.
  • Rosso, V. S.; Szajnman, S. H.; Malayil, L.; Galizzi, M.; Moreno, S. N. J.; Docampo, R.; Rodriguez, J. B. Synthesis and Biological Evaluation of New 2-Alkylaminoethyl-1,1-Bisphosphonic Acids against Trypanosoma cruzi and Toxoplasma gondii Targeting Farnesyl Diphosphate Synthase. Bioorg. Med. Chem. 2011, 19, 2211–2217. DOI: 10.1016/j.bmc.2011.02.037.
  • Ewa, C.; Pawel, K. Synthetic Procedures Leading towards Aminobisphosphonates. Molecules. 2016, 21, 1474. DOI: 10.3390/molecules21111474.
  • Alabugin, I. V. Remote Stereoelectronic Effects. In Stereoelectronic Effects: A Bridge between Structure and Reactivity; Chichester, UK; Hoboken, NJ: John Wiley & Sons, Ltd., 2016.
  • Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected Organophosphorus Compounds with Biological Activity. RSC Adv. 2016, 6, 7101–7112. DOI: 10.1039/C5RA25446A.
  • Duan, X. J.; Zhang, W. W.; Li, X. M.; Wang, B. G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 37–43. DOI: 10.1016/j.foodchem.2004.12.015.
  • Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P. L.; Wishnok, J. S.; Tannenbaum, S. R. Analysis of Nitrate, Nitrite and [15N] Nitrate in Biological Fields. Anal. Biochem. 1982, 126, 131–138. DOI: 10.1016/0003-2697(82)90118-x.
  • Marcocci, L.; Maguire, J. J.; Droy-Lefaix, M. T.; Packer, L. The Nitric Oxide –Scavenging Properties of Ginkgo Biloba Extract EGb 761. Biochem. Biophys. Res. Commun. 1994, 2, 748. DOI: 10.1006/bbrc.1994.1764.
  • Ruch, R. J.; Cheng, S. J.; Klaunig, J. E. Prevention of Cytotoxicity and Inhibition of Intercellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea. Carcinogenesis. 1989, 10, 1003–1008. DOI: 10.1093/carcin/10.6.1003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.