Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 6
126
Views
3
CrossRef citations to date
0
Altmetric
Articles

SnCl2⋅2H2O catalyzed one-pot three components synthesis of pyrano[4,3-b]chromenes and chromeno[4,3-b]chromenes

Pages 904-912 | Received 02 Sep 2020, Published online: 10 Dec 2020

References

  • Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. DOI: 10.1021/cr100233r.
  • Echemendía, R.; de La Torre, A. F.; Monteiro, J. L.; Pila, M.; Corrêa, A. G.; Westermann, B.; Rivera, D. G.; Paixão, M. W. Highly Stereoselective Synthesis of Natural-Product-like Hybrids by an Organocatalytic/Multicomponent Reaction Sequence. Angew. Chem. Int. Ed. Engl. 2015, 54, 7621–7625. DOI: 10.1002/anie.201412074.
  • Zhao, W.; Chen, F. E. One-Pot Synthesis and Its Practical Application in Pharmaceutical Industry. COS. 2012, 9, 873–897. DOI: 10.2174/157017912803901619.
  • Kobayashi, S. New Methodologies for the Synthesis of Compound Libraries. Chem. Soc. Rev. 1999, 28, 1–15. DOI: 10.1039/a707429h.
  • Trost, B. M. Atom Economy. A Challenge for Organic Synthesis - Homogeneous Catalysis Leads the Way. Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281. DOI: 10.1002/anie.199502591.
  • Zhi, S.; Ma, X.; Zhang, W. Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules. Org. Biomol. Chem. 2019, 17, 7632–7650. and references therein. DOI: 10.1039/C9OB00772E.
  • da Rocha, D. R.; de Souza, A. C.; Resende, J. A.; Santos, W. C.; dos Santos, E. A.; Pessoa, C.; de Moraes, M. O.; Costa-Lotufo, L. V.; Montenegro, R. C.; Ferreira, V. F. Synthesis of New 9-Hydroxy-α- and 7-Hydroxy-β-pyran Naphthoquinones and Cytotoxicity Against Cancer Cell Lines. Org. Biomol. Chem. 2011, 9, 4315–4322. DOI: 10.1039/C1OB05209H.
  • Schiller, R.; Tichotová, L.; Pavlík, J.; Buchta, V.; Melichar, B.; Votruba, I.; Kuneš, J.; Špulák, M.; Pour, M. 3,5-Disubstituted Pyranone Analogues of Highly Antifungally Active Furanones: Conversion of Biological Effect from Antifungal to Cytostatic. Bioorg. Med. Chem. Lett. 2010, 20, 7358–7360. DOI: 10.1016/j.bmcl.2010.10.052.
  • Wang, Y.; Mo, S. Y.; Wang, S. J.; Li, S.; Yang, Y. C.; Shi, J. G. A Unique Highly Oxygenated Pyrano[4,3-c][2]benzopyran-1,6-dione Derivative with Antioxidant and Cytotoxic Activities from the Fungus Phellinus igniarius. Org. Lett. 2005, 7, 1675–1678. DOI: 10.1021/ol0475764.
  • Sashidhara, K. V.; Rosaiah, J. N.; Bhatia, G.; Saxena, J. K. Novel Keto-Enamine Schiffs Bases from 7-Hydroxy-4-Methyl-2-Oxo-2H-Benzo[h] Chromene-8,10-Dicarbaldehyde as Potential Antidyslipidemic and Antioxidant Agents. Eur. J. Med. Chem. 2008, 43, 2592–2596. DOI: 10.1016/j.ejmech.2007.10.029.
  • Wang, S.; Milne, G.; Yan, X.; Posey, I. J.; Nicklaus, M. C.; Graham, L.; Rice, W. G. Discovery of Novel, Non-Peptide HIV-1 Protease Inhibitors by Pharmacophore Searching. J. Med. Chem. 1996, 39, 2047–2054. DOI: 10.1021/jm950874+.
  • Conti, C.; Desideri, N. New 4H-Chromen-4-One and 2H-Chromene Derivatives as anti-Picornavirus Capsid-Binders. Bioorg. Med. Chem. 2010, 18, 6480–6488. DOI: 10.1016/j.bmc.2010.06.103.
  • Hussain, H.; Aziz, S.; Schulz, B.; Krohn, K. Synthesis of a 4H-Anthra[1,2-b]Pyran Derivative and Its Antimicrobial Activity. Nat. Prod. Commun. 2011, 6, 841–843. DOI: 10.1177/1934578X1100600621.
  • Patil, S. A.; Patil, S. A.; Beaman, K. D.; Patil, R. Indole Molecules as Inhibitors of Tubulin Polymerization: potential New Anticancer Agents, an Update (2013–2015). Future Med. Chem. 2015, 8, 1291–1316.
  • Uher, M.; Konecny, V.; Rajniakove, O. Synthesis of 5-Hydroxy-2-Hydroxymethyl-4H-Pyran-4-One Derivatives with Pesticide Activity. Chem. Pap. 1994, 48, 282–284.
  • Banitaba, S. H.; Safari, J.; Baghbanian, S. M.; Rezaei, N.; Tashakkorian, H. Nanozeolite Clinoptilolite as a Highly Efficient Heterogeneous Catalyst for the Synthesis of Various 2-Amino-4H-Chromene Derivatives in Aqueous Media. Green Chem. 2013, 15, 3446–3458. DOI: 10.1039/C3GC41302K.
  • Saha, A.; Payra, S.; Banerjee, S. One-Pot Multicomponent Synthesis of Highly Functionalized Bio-Active Pyrano[2,3-c]Pyrazole and Benzylpyrazolyl Coumarin Derivatives Using ZrO2 Nanoparticles as a Reusable Catalyst. Green Chem. 2015, 17, 2859–2866. DOI: 10.1039/C4GC02420F.
  • Makawana, J. A.; Patel, M. P.; Patel, R. G. Synthesis and Antimicrobial Evaluation of New Pyrano[4,3-b]Pyran and Pyrano[3,2-c]Chromene Derivatives Bearing a 2-Thiophenoxyquinoline Nucleus. Arch. Pharm. 2012, 345, 314–322. DOI: 10.1002/ardp.201100203.
  • Abdou, M. M.; El-Saeed, R. L.; Bondock, S. Recent Advances in 4-Hydroxycoumarin Chemistry. Part 1: Synthesis and Reactions. Arab. J. Chem. 2019, 12, 88–121. DOI: 10.1016/j.arabjc.2015.06.012.
  • Anaraki-Ardakani, H. Efficient Synthesis of Pyranochromene Derivatives via Three-Component Reaction of 4-Hydroxy-6-Methylpyran-1-One with Aromatic Aldehydes and Cyclic 1,3-Diketone Catalyzed by ZnO Anoparticles. Russ. J. Gen. Chem. 2017, 87, 1820–1825. DOI: 10.1134/S1070363217080291.
  • Emtiazi, H.; Amrollahi, M. A. An Efficient and Rapid Access to the Synthesis of Tetrahydrochromeno[4,3-b]Chromene-6,8-Dione Derivatives by Magnesium Perchlorate. S. Afr. J. Chem. 2014, 67, 175–179.
  • Khosravian, F.; Karami, B.; Farahi, M. Synthesis and Characterization of Molybdic Acid Immobilized on Modified Magnetic Nanoparticles as a New and Recyclable Catalyst for the Synthesis of Chromeno[4,3-b]Chromenes. New J. Chem. 2017, 41, 11584–11590. DOI: 10.1039/C7NJ02390A.
  • Anaraki-Ardakani, H.; Ghanavatian, R.; Akbari, M. An Efficient One-Pot Synthesis of Tetrahydro-Chromeno [4,3-b] Chromene-6,8-Dione and Tetrahydro-Pyrano [4,3-b] Chromene-1,9-Dione Derivatives under Solvent-Free Conditions. World Appl. Sci. J. 2013, 22, 802–808. DOI: 10.5829/idosi.wasj.2013.22.06.333.
  • Bentley, R.; Zwitkowits, P. M. Biosynthesis of Tropolones in Penicillium Stipitatum. VII. The Formation of Polyketide Lactones and Other Nontropolone Compounds as a Result of Ethionine Inhibition. J. Am. Chem. Soc. 1967, 89, 676–680. DOI: 10.1021/ja00979a036.
  • Bentley, R.; Zwitkowits, P. M. Biosynthesis of Tropolones in Penicillium Stipitatum. 8. The Utilization of Polyketide Lactones for Tropolone Formation. J. Am. Chem. Soc. 1967, 89, 681–685. DOI: 10.1021/ja00979a037.
  • Liu, B.; Raeth, T.; Beuerle, T.; Beerhues, L. A Novel 4-Hydroxycoumarin Biosynthetic Pathway. Plant Mol. Biol. 2010, 72, 17–25. DOI: 10.1007/s11103-009-9548-0.
  • Zhang, J.; Jiang, Y.; Cao, Y.; Liu, J.; Zheng, D.; Chen, X.; Han, L.; Jiang, C.; Huang, X. Violapyrones A-G, α-Pyrone Derivatives from Streptomyces violascens Isolated from Hylobates hoolock Feces. J. Nat. Prod. 2013, 76, 2126–2130. DOI: 10.1021/np4003417.
  • Patil, S. A.; Patil, S. A.; Patil, R.; Keri, R. S.; Budagumpi, S. N-Heterocyclic Carbene Metal Complexes as Bio-Organometallic Antimicrobial and Anticancer Drugs. Future Med. Chem 2015, 7, 893–909. DOI: 10.4155/fmc.15.61.
  • Rehse, K.; Schinkel, W.; Siemann, U. [Anticoagulant 4-hydroxy-2-pyrones (author's transl)] . Arch. Pharm. 1980, 313, 344–351. DOI: 10.1002/ardp.19803130411.
  • Abdelhafez, O. M.; Amin, K. M.; Batran, R. Z.; Maher, T. J.; Nada, S. A.; Sethumadhavan, S. Synthesis, Anticoagulant and PIVKA-II Induced by New 4-Hydroxycoumarin Derivatives. Bioorg. Med. Chem. 2010, 18, 3371–3378. DOI: 10.1016/j.bmc.2010.04.009.
  • Simon, R. R.; Shaughnessy, S. G. Effects of Anticoagulants on Bone. BMM. 2004, 2, 151–158. DOI: 10.1385/BMM:2:2:151.
  • Rehse, K.; Schinkel, W. [Photocyclization of Anticoagulant 6-Alkyl-4-hydroxy-2-pyrones]. Arch. Pharm. 1983, 316, 845–849. DOI: 10.1002/ardp.19833161007.
  • Rehse, K.; Schinkel, W. [Anticoagulant 3-Aralkyl-4-hydroxy-2-pyrones]. Arch. Pharm. 1983, 316, 988–994. DOI: 10.1002/ardp.19833161204.
  • Rehse, K.; Ruther, D. Einfluß Der S‐Oxidation Auf Anticoagulante Wirkungen Bei 4‐Hydroxycumarinen, 4‐Hydroxy‐2‐Pyronen Und 1,3‐Indandionen. Arch. Pharm. Pharm. Med. Chem. 1984, 317, 262–267. DOI: 10.1002/ardp.19843170313.
  • Evidente, A.; Conti, L.; Altomare, C.; Bottalico, A.; Sindona, G.; Segre, A. L.; Logrieco, A. Fusapyrone and Deoxyfusapyrone, Two Antifungal alpha-Pyrones from Fusarium semitectum. Nat. Toxins. 1994, 2, 4–13. DOI: 10.1002/nt.2620020103.
  • Chavan, A. P. Microwave Assisted Synthesis of 4-Aryl/Alkylaminocoumarins. J. Chem. Res. 2006, 3, 179–181. DOI: 10.3184/030823406776330675.
  • Giddens, A. C.; Nielsen, L.; Boshoff, H. I.; Tasdemir, D.; Perozzo, R.; Kaiser, M.; Wang, F.; Sacchettini, J. C.; Copp, B. R. Natural Product Inhibitors of Fatty Acid Biosynthesis: synthesis of the Marine Microbial Metabolites Pseudopyronines a and B and Evaluation of Their anti-Infective Activities. Tetrahedron 2008, 64, 1242–1249. DOI: 10.1016/j.tet.2007.11.075.
  • Kamali, M.; Shahi, S.; Akbar Bujar, M. M. Temperature‐Dependent Green Synthesis of New Series of Mannich Bases from 4‐Hydroxy‐Pyridine‐2‐One and Their Antioxidant Activity Evaluation. ChemSelect 2020, 5, 1709–1712. DOI: 10.1002/slct.201904615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.