Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 8
337
Views
0
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic N-benzylation of NH-sulfoximines

, , & ORCID Icon
Pages 1284-1292 | Received 07 Dec 2020, Published online: 11 Feb 2021

References

  • Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. Angew. Chem. Int. Ed. Engl. 2013, 52, 9399–9349. DOI: 10.1002/anie.201302209.
  • (a) Griffith, O. W.; Anderson, M. E.; Meister, A. Potent and Specific Inhibition of Glutathione Synthesis by Buthionine Sulfoximine (S-n-Butyl Homocysteine Sulfoximine). J. Biol. Chem. 1979, 254, 1205–1210. DOI: 10.1016/S0021-9258(17)34188-1. (b) Miller, P.; James, G. W. L. Inhibition of Experimental Immediate Hypersensitivity Reactions by a Novel Xanthone, RU 31156. Arch. Int. Pharmacodyn. Ther. 1978, 231, 328–339. (c) Lu, D.; Sham, Y. Y.; Vince, R. Design, Asymmetric Synthesis, and Evaluation of Pseudosymmetric Sulfoximine Inhibitors against HIV-1 Protease. Bioorg. Med. Chem. 2010, 18, 2037–2048. DOI: 10.1016/j.bmc.2010.01.020.
  • (a) Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; et al. Discovery and Characterization of Sulfoxaflor, a Novel Insecticide Targeting Sap-Feeding Pests. J. Agric. Food Chem. 2011, 59, 2950–2957. DOI: 10.1021/jf102765x. (b) Babcock, J. M.; Gerwick, C. B.; Huang, J. X.; Loso, M. R.; Nakamura, G.; Nolting, S. P.; Rogers, R. B.; Sparks, T. C.; Thomas, J.; Watson, G. B.; Zhu, Y. Biological Characterization of Sulfoxaflor, a Novel Insecticide. Pest Manag. Sci. 2011, 67, 328–334. DOI: 10.1002/ps.2069. (c) Watson, G. B.; Loso, M. R.; Babcock, J. M.; Hasler, J. M.; Letherer, T. J.; Young, C. D.; Zhu, Y.; Casida, J. E.; Sparks, T. C. Novel Nicotinic Action of the Sulfoximine Insecticide Sulfoxaflor. Insect Biochem. Mol. Biol. 2011, 41, 432–439. DOI: 10.1016/j.ibmb.2011.01.009. (d) Sparks, T. C.; Watson, G. B.; Loso, M. R.; Geng, C.; Babcock, J. M.; Thomas, J. D. Sulfoxaflor and the Sulfoximine Insecticides: chemistry, Mode of Action and Basis for Efficacy on Resistant Insects. Pestic. Biochem. Physiol. 2013, 107, 1–7. DOI: 10.1016/j.pestbp.2013.05.014.
  • (a) Bolm, C.; Simic, O. Highly Enantioselective Hetero-Diels-Alder Reactions Catalyzed by a C(2)-Symmetric bis(sulfoximine) Copper(II) Complex. J. Am. Chem. Soc. 2001, 123, 3830–3831. DOI: 10.1021/ja004261k. (b) Bolm, C.; Verrucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.; Okamura, H. A New Class of C1-Symmetric Monosulfoximine Ligands for Enantioselective Hetero Diels-Alder Reactions. Chem. Commun. 2003, 2826–2827. DOI: 10.1039/B309556H. (c) Bolm, C.; Martin, M.; Gescheidt, G.; Palivan, C.; Neshchadin, D.; Bertagnolli, H.; Feth, M. P.; Schweiger, A.; Mitrikas, G.; Harmer, J. Spectroscopic Investigations of Bis(Sulfoximine) Copper(II) Complexes and Their Relevance in Asymmetric Catalysis. J. Am. Chem. Soc. 2003, 125, 6222–6227. DOI: 10.1021/ja027870w. (d) Langner, M.; Bolm, C. C(1)-Symmetric Sulfoximines as Ligands in Copper-Catalyzed Asymmetric Mukaiyama-Type Aldol Reactions. Angew. Chem. Int. Ed. 2004, 43, 5984–5987. DOI: 10.1002/anie.200460953.
  • (a) Dong, W.; Parthasarathy, K.; Cheng, Y.; Pan, F.; Bolm, C. Hydroarylations of Heterobicyclic Alkenes through Rhodium-Catalyzed Directed C-H Functionalizations of S-Aryl Sulfoximines. Chemistry 2014, 20, 15732–15736. DOI: 10.1002/chem.201404859. (b) Parthasarathy, K.; Bolm, C. Rhodium(III)-Catalyzed Selective ortho-Olefinations of N-Acyl and N-Aroyl Sulfoximines by C–H Bond Activation. Chemistry 2014, 20, 4896–4900. DOI: 10.1002/chem.201304925. (c) Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. Sulfoximine-Directed Ruthenium-Catalyzed ortho-C–H Alkenylation of (Hetero)Arenes: Synthesis of EP3 Receptor Antagonist Analogue. J. Org. Chem. 2014, 79, 6123–6134. DOI: 10.1021/jo5008465.
  • (a) Bolm, C.; Hildebrand, J. P. Palladium-Catalyzed Carbon-Nitrogen Bond Formation: A Novel, Catalytic Approach towards N-Arylated Sulfoximines. Tetrahedron Lett. 1998, 39, 5731–5734. DOI: 10.1016/S0040-4039(98)01199-X. (b) Harmata, M.; Pavri, N. A One-Pot, One-Operation [3 + 3] Annulation Approach to Benzothiazines. Angew. Chem. Int. Ed. 1999, 38, 2419–2421. DOI: 10.1002/(SICI)1521-3773(19990816)38:16<2419::AID-ANIE2419>3.0.CO;2-I. (c) Bolm, C.; Hildebrand, J. P. Palladium-Catalyzed N-Arylation of Sulfoximines with Aryl Bromides and Aryl Iodides. J. Org. Chem. 2000, 65, 169–175. DOI: 10.1021/jo991342u. (d) Bolm, C.; Hildebrand, J. P.; Rudolph, J. Catalytic Coupling of Aryl Sulfonates with sp2-Hybridized Nitrogen Nucleophiles: Palladium- and Nickel-Catalyzed Synthesis of N-Aryl Sulfoximines. Synthesis 2000, 2000, 911–913. DOI: 10.1055/s-2000-6287. (e) Bolm, C.; Martin, M.; Gibson, L. Palladium-Catalyzed Formation of Heterocycles by Coupling of Dibromoarenes and Sulfoximines. Synlett 2002, 2002, 0832–0834. DOI: 10.1055/s-2002-25362. (f) Harmata, M.; Hong, X.; Ghosh, S. K. Microwave-Assisted N-Arylation of a Sulfoximine with Aryl Chlorides. Tetrahedron Lett. 2004, 45, 5233–5236. DOI: 10.1016/j.tetlet.2004.05.027. (g) Yongpruksa, N.; Calkins, N. L.; Harmata, M. Efficient Palladium-Catalyzed N-Arylation of a Sulfoximine with Aryl Chlorides. Chem. Commun. 2011, 47, 7665–7667. DOI: 10.1039/c1cc12444g. (h) Cho, G. Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Copper-Mediated Cross-Coupling Reactions of N-Unsubstituted Sulfoximines and Aryl Halides. Org. Lett. 2004, 6, 3293–3296. DOI: 10.1021/ol048806h. (i) Sedelmeier, J.; Bolm, C. Efficient Copper-Catalyzed N-Arylation of Sulfoximines with Aryl Iodides and Aryl Bromides. J. Org. Chem. 2005, 70, 6904–6906. DOI: 10.1021/jo051066l. (j) Correa, A.; Bolm, C. Ligand-Free Copper-Catalyzed N-Arylations of Nitrogen Nucleophiles. Adv. Synth. Catal. 2007, 349, 2673–2676. (k) Macé, Y.; Pégot, B.; Guillot, R.; Bournaud, C.; Toffano, M.; Vo-Thanh, G.; Magnier, E. Efficient Copper-Induced Coupling between NH-Fluoroalkylated Sulfoximines and Aryl Iodides or Bromides. Tetrahedron 2011, 67, 7575–7580. DOI: 10.1016/j.tet.2011.07.060. (l) Liu, Z. J.; Vors, J. P.; Gesing, E. R. F.; Bolm, C. Microwave-Assisted Solvent- and Ligand-Free Copper-Catalysed Cross-Couplings between Halo Pyridines and Nitrogen Nucleophiles. Green Chem. 2011, 13, 42–45. DOI: 10.1039/C0GC00296H. (m) Moessner, C.; Bolm, C. Cu(OAc)2-Catalyzed N-Arylations of Sulfoximines with Aryl Boronic Acids. Org. Lett. 2005, 7, 2667–2669. DOI: 10.1021/ol050816a. (n) Vaddula, B.; Leazer, J.; Varma, R. S. Copper-Catalyzed Ultrasound-Expedited N-Arylation of Sulfoximines Using Diaryliodonium Salts. Adv. Synth. Catal. 2012, 354, 986–990. DOI: 10.1002/adsc.201100808. (o) Correa, A.; Bolm, C. Iron-Catalyzed C-N Cross-Coupling of Sulfoximines with Aryl Iodides. Adv. Synth. Catal. 2008, 350, 391–394. DOI: 10.1002/adsc.200700508. (p) Kim, J.; Ok, J.; Kim, S.; Choi, W.; Lee, P. H. Mild Copper-TBAF-Catalyzed N-Arylation of Sulfoximines with Aryl Siloxanes. Org. Lett. 2014, 16, 4602–4605. DOI: 10.1021/ol502174n. (q) Zhu, H.; Teng, F.; Pan, C.; Cheng, J.; Yu, J.-T. Radical N-Arylation/Alkylation of Sulfoximines. Tetrahedron Lett. 2016, 57, 2372–2374. DOI: 10.1016/j.tetlet.2016.04.042.
  • (a) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Copper-Catalyzed Direct Sulfoximination of Azoles and Polyfluoroarenes under Ambient Conditions. Org. Lett. 2011, 13, 359–361. DOI: 10.1021/ol102844q. (b) Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. N-Arylations of Sulfoximines with 2-Arylpyridines by Copper-Mediated Dual N–H/C–H Activation. Org. Lett. 2014, 16, 2661–2663. DOI: 10.1021/ol500963p. (c) Chinnagolla, R. K.; Vijeta, A.; Jeganmohan, M. Ruthenium- and Palladium-Catalyzed Consecutive Coupling and Cyclization of Aromatic Sulfoximines with Phenylboronic Acids: An Efficient Route to Dibenzothiazines. Chem. Commun. 2015, 51, 12992–12995. DOI: 10.1039/c5cc04589d.
  • (a) Johnson, C. R.; Rigau, J. J.; Haake, M.; McCants, D.; Keiser, J. E.; Gertsema, A. Alkylation of Sulfilimines and Sulfoximines. Tetrahedron Lett. 1968, 9, 3719–3722. DOI: 10.1016/S0040-4039(00)75525-0. (b) Johnson, C. R.; Haake, M.; Schroeck, C. W. Chemistry of Sulfoxides and Related Compounds. XXVI. Preparation and Synthetic Applications of (Dimethylamino)Phenyloxosulfonium Methylide. J. Am. Chem. Soc. 1970, 92, 6594–6598. DOI: 10.1021/ja00725a035. (c) Williams, T. R.; Cram, D. J. Stereochemistry of Sulfur Compounds. IV. New Ring System of Carbon, Nitrogen, and Chiral Sulfur. J. Org. Chem. 1973, 38, 20–26. DOI: 10.1021/jo00941a005. (d) Raguse, B.; Ridley, D. D. The N-Alkylation of Sulfoximines. Aust. J. Chem. 1986, 39, 1655–1659. DOI: 10.1071/CH9861655. (e) Johnson, C. R.; Lavergne, O. M. Alkylation of Sulfoximines and Related Compounds at the Imino Nitrogen under Phase-Transfer Conditions. J. Org. Chem. 1993, 58, 1922–1923. DOI: 10.1021/jo00059a052. (f) Hendriks, C. M. M.; Bohmann, R. A.; Bohlem, M.; Bolm, C. N-Alkylations of NH-Sulfoximines and NH-Sulfondiimines with Alkyl Halides Mediated by KOH in DMSO. Adv. Synth. Catal. 2014, 356, 1847–1852. DOI: 10.1002/adsc.201400193. (g) Cheng, Y.; Dong, W.; Wang, L.; Parthasarathy, K.; Bolm, C. Iron-Catalyzed Hetero-Cross-Dehydrogenative Coupling Reactions of Sulfoximines with Diarylmethanes: A New Route to N-Alkylated Sulfoximines. Org. Lett. 2014, 16, 2000–2002. DOI: 10.1021/ol500573f.
  • (a) Yoon, T. P.; Ischay, M. A.; Du, J. Visible Light Photocatalysis as a Greener Approach to Photochemical Synthesis. Nat. Chem. 2010, 2, 527–532. DOI: 10.1038/nchem.687. (b) Narayanam, J. M. R.; Stephenson, C. R. J. Visible Light Photoredox Catalysis: applications in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 102–113. DOI: 10.1039/b913880n. (c) Xuan, J.; Xiao, W.-J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. Engl. 2012, 51, 6828–6838. DOI: 10.1002/anie.201200223. (d) Shi, L.; Xia, W. Photoredox Functionalization of C–H Bonds Adjacent to a Nitrogen Atom. Chem. Soc. Rev. 2012, 41, 7687–7697. DOI: 10.1039/c2cs35203f. (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. DOI: 10.1021/cr300503r. (f) Schultz, D. M.; Yoon, T. P. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science 2014, 343, 1239176–1239988. DOI: 10.1126/science.1239176. (g) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044–2056. DOI: 10.1039/c5cs00655d. (h) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. DOI: 10.1021/acs.chemrev.6b00057. (i) Lang, Y.; Zhao, J.; Chen, X. Cooperative Photoredox Catalysis. Chem. Soc. Rev. 2016, 45, 3026–3038. DOI: 10.1039/c5cs00659g. (j) Arias-Rotondo, D.; McCusker, J. K. The Photophysics of Photoredox Catalysis: A Roadmap for Catalyst Design. Chem. Soc. Rev. 2016, 45, 5803–5820. DOI: 10.1039/c6cs00526h. (k) Staveness, D.; Bosque, I.; Stephenson, C. R. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Acc Chem Res 2016, 49, 2295–2306. DOI: 10.1021/acs.accounts.6b00270. (l) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Acc Chem Res 2016, 49, 1911–1923. DOI: 10.1021/acs.accounts.6b00254.
  • Wimmer, A.; König, B. Visible-Light-Mediated Photoredox-Catalyzed N-Arylation of NH-Sulfoximines with Electron-Rich Arenes. Adv. Synth. Catal. 2018, 360, 3277–3285. DOI: 10.1002/adsc.201800607.
  • Wimmer, A.; König, B. Arylation of NH-Sulfoximines via Dual Nickel Photocatalysis. Org. Lett. 2019, 21, 2740–2744. DOI: 10.1021/acs.orglett.9b00698.
  • Wang, C.; Tu, Y.; Ma, D.; Bolm, C. Photocatalytic Fluoro Sulfoximidations of Styrenes. Angew. Chem. Int. Ed Engl. 2020, 59, 14134–14137. DOI: 10.1002/anie.202005844.
  • Yield of 3ak under strong basic condition is 19%. Reaction condition under strong base: 1a (0.2 mmol, 1.0 equiv), 2k (0.2 mmol, 1.0 equiv), KOH (0.2 mmol, 1.0 equiv), DMSO (1.0 mL), room temperature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.