Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 13
196
Views
1
CrossRef citations to date
0
Altmetric
Articles

Bis(sulfanediyl)bis(6-aminopyrimidin-4-ones): Versatile precursors for novel bis(sulfanediyl)bis(tetrahydropyrimido[4,5-b]quinoline-4,6-diones) linked to aliphatic spacer via multi-component reactions

, , &
Pages 2001-2015 | Received 04 Feb 2021, Published online: 12 May 2021

References

  • Sasada, T.; Kobayashi, F.; Sakai, N.; Konakahara, T. An Unprecedented Approach to 4,5-Disubstituted Pyrimidine Derivatives by a ZnCl2-Catalyzed Three-Component Coupling Reaction. Org. Lett. 2009, 11, 2161–2164. DOI: 10.1021/ol900382j.
  • Agarwal, N.; Raghuwanshi, S. K.; Upadhyay, D. N.; Shukla, P. K.; Ram, V. J. Suitably Functionalised Pyrimidines as Potential Antimycotic Agents. Bioorg. Med. Chem. Lett. 2000, 10, 703–706. DOI: 10.1016/S0960-894X(00)00091-3.
  • H. S. Basavaraj; G. M. Sreenivasa; E. Jayachandran; L. V. G. Nargund; D. S. Rao. Synthesis of Substituted Pyrimidino Imidazolinones as Antimicrobial Agents. Indian J. Heterocycl. Chem. 2005, 15, 69–70.
  • Kompis, I.; Wick, A. Synthese Von 4-Halogensubstituierten Analogen Von Trimethoprim. Helv. Chim. Acta. 1977, 60, 3025–3034. DOI: 10.1002/hlca.19770600854.
  • Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate Reductase Inhibitors as Antibacterial Agents. Biochem. Pharmacol. 2006, 71, 941–948. DOI: 10.1016/j.bcp.2005.10.052.
  • Schneider, P.; Hawser, S.; Islam, K. Iclaprim, A Novel Diaminopyrimidine with Potent Activity on Trimethoprim Sensitive and Resistant Bacteria. Bioorg. Med. Chem. Lett. 2003, 13, 4217–4221. DOI: 10.1016/j.bmcl.2003.07.023.
  • Roth, B.; Cheng, C. C. Recent Progress in the Medicinal Chemistry of 2,4-Diaminopyrimidines. Prog. Med. Chem..1982, 19, 269–331. DOI: 10.1016/S0079-6468(08)70332-1.
  • Sharma, P.; Rane, N.; Gurram, V. K. Synthesis and QSAR Studies of Pyrimido[4,5-d]Pyrimidine-2,5-Dione Derivatives as Potential Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2004, 14, 4185–4190. DOI: 10.1016/j.bmcl.2004.06.014.
  • Prakash, O.; Bhardwaj, V.; Kumar, R.; Tyagi, P.; Aneja, K. R. Organoiodine (III) Mediated Synthesis of 3-Aryl/Hetryl-5,7-Dimethyl-1,2,4-Triazolo[4,3-a]Pyrimidines as Antibacterial Agents. Eur. J. Med. Chem. 2004, 39, 1073–1077. DOI: 10.1016/j.ejmech.2004.06.011.
  • Agarwal, N.; Srivastava, P.; Raghuwanshi, S. K.; Upadhyay, D. N.; Sinha, S.; Shukla, P. K.; Ji Ram, V. Chloropyrimidines as a New Class of Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2002, 10, 869–874. DOI: 10.1016/S0968-0896(01)00374-1.
  • Abu-Hashem, A. A.; El-Shehry, M. F.; Badria, F. A. E. Design and Synthesis of Novel Thiophenecarbohydrazide, Thienopyrazole and Thienopyrimidine Derivatives as Antioxidant and Antitumor Agents. Acta. Pharm. 2010, 60, 311–323. DOI: 10.2478/v10007-010-0027-6.
  • Sondhi, S. M.; Jain, S.; Dwivedi, A. D.; Shukla, R.; Raghubir, R. Synthesis of Condensed Pyrimidines and Their Evaluation for anti-Inflammatory and Analgesic Activities. Indian J. Chem. – Sect. B Org. Med. Chem. 2008, 47, 136–143.
  • Balzarini, J.; McGuigan, C. Bicyclic Pyrimidine Nucleoside Analogues (BCNAs) as Highly Selective and Potent Inhibitors of Varicella-Zoster Virus Replication. J. Antimicrob. Chemother. 2002, 50, 5–9. DOI: 10.1093/jac/dkf037.
  • Hannah, D. R.; Stevens, M. F. G. Structural Studies on Bioactive Compounds. Part 38. 1 Reactions of 5-Aminoimidazole-4-Carboxamide: Synthesis of Imidazo [1, 5- a] Quinazoline-3-. J. Chem. Res. 2003, 2003, 398–401. DOI: 10.3184/030823403103174533.
  • Rana, K.; Kaur, B.; Kumar, B. Synthesis and anti-Hypertensive Activity of Some Dihydropyrimidines. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 2004, 43, 1553–1557.
  • Lee, H, Kim, B, Ahn, J, Kang, S, Lee, J, Shin, J, Ahn, S, Lee, S, Yoon, S, Molecular Design, Synthesis, and Hypoglycemic and Hypolipidemic Activities of Novel Pyrimidine Derivatives Having Thiazolidinedione. Eur. J. Med. Chem. 2005, 40, 862–874. DOI: 10.1016/j.ejmech.2005.03.019.
  • Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and Biological Evaluation of Novel 2,4,5-Substituted Pyrimidine Derivatives for Anticancer Activity. Bioorg. Med. Chem. Lett. 2009, 19, 275–278. DOI: 10.1016/j.bmcl.2008.09.067.
  • Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; M.S. Bedi, P.; Nepali, K. Anti-Cancer Pyrimidines in Diverse Scaffolds: A Review of Patent Literature. Recent Pat. Anticancer Drug Discov. 2014, 10, 23–71. DOI: 10.2174/1574892809666140917104502.
  • Ghorab, M.; Ragab, F.; Noaman, E.; Heiba, H.; El-Hossary, E. Synthesis of Some Novel Quinolines and Pyrimido[4,5-b]Quinolines Bearing a Sulfonamide Moiety as Potential Anticancer and Radioprotective Agents. Arzneimittelforschung. 2011, 57, 795–803. DOI: 10.1055/s-0031-1296682.
  • Ghorab, M. M.; Ragab, F. a; Heiba, H. I.; Arafa, R. K.; El-Hossary, E. M. In Vitro Anticancer Screening and Radiosensitizing Evaluation of Some New Quinolines and Pyrimido[4,5-b]Quinolines Bearing a Sulfonamide Moiety. Eur. J. Med. Chem. 2010, 45, 3677–3684. DOI: 10.1016/j.ejmech.2010.05.014.
  • Mir, F.; Shafi, S.; Zaman, M. S.; Kalia, N. P.; Rajput, V. S.; Mulakayala, C.; Mulakayala, N.; Khan, I. A.; Alam, M. S. Sulfur Rich 2-Mercaptobenzothiazole and 1,2,3-Triazole Conjugates as Novel Antitubercular Agents. Eur. J. Med. Chem. 2014, 76, 274–283. DOI: 10.1016/j.ejmech.2014.02.017.
  • Siddiqui, N.; Rana, A.; Khan, S. A.; Haque, S. E.; Alam, M. S.; Ahsan, W.; Ahmed, S. Synthesis of 8-Substituted-4-(2/4-Substituted Phenyl)-2H-[1,3,5]Triazino[2,1-b][1,3]Benzothiazole-2-Thiones and Their Anticonvulsant, Anti-Nociceptive, and Toxicity Evaluation in Mice. J. Enzyme Inhib. Med. Chem. 2009, 24, 1344–1350. DOI: 10.3109/14756360902888176.
  • Prakash, O.; Aneja, D. K.; Hussain, K.; Lohan, P.; Ranjan, P.; Arora, S.; Sharma, C.; Aneja, K. R. Synthesis and Biological Evaluation of Dihydroindeno and Indeno [1,2-e] [1,2,4]Triazolo [3,4-b] [1,3,4]Thiadiazines as Antimicrobial Agents. Eur. J. Med. Chem. 2011, 46, 5065–5073. DOI: 10.1016/j.ejmech.2011.08.019.
  • Sumangala, V.; Poojary, B.; Chidananda, N.; Arulmoli, T.; Shenoy, S. Facile Synthesis, Cytotoxic and Antimicrobial Activity Studies of a New Group of 6-Aryl-3-[4-(Methylsulfonyl)Benzyl]-7H-[1,2,4]Triazolo[3,4-b][1,3,4] Thiadiazines. Eur. J. Med. Chem. 2012, 54, 59–64. DOI: 10.1016/j.ejmech.2012.04.024.
  • Nqoro, X.; Tobeka, N.; Aderibigbe, B. A. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules. 2017, 22, 2268. DOI: 10.3390/molecules22122268.
  • Muregi, F. W.; Ishih, A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res. 2009, 71, 32. DOI: 10.1002/ddr.20345.
  • Salama, S. K.; Mohamed, M. F.; Darweesh, A. F.; Elwahy, A. H. M.; Abdelhamid, I. A. Molecular Docking Simulation and Anticancer Assessment on Human Breast Carcinoma Cell Line Using Novel Bis(1,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitrile) and Bis(1,4-Dihydropyrazolo[4′,3′:5,6]Pyrano[2,3-b]Pyridine-6-Carbonitrile) Derivatives. Bioorg. Chem. 2017, 71, 19–29. DOI: 10.1016/J.BIOORG.2017.01.009.
  • Antonini, I.; Polucci, P.; Magnano, A.; Sparapani, S.; Martelli, S. Rational Design, Synthesis, and Biological Evaluation of Bis(Pyrimido[5,6,1-de]Acridines) and Bis(Pyrazolo[3,4,5-Kl]Acridine-5-Carboxamides) as New Anticancer Agents. J. Med. Chem. 2004, 47, 5244–5250. DOI: 10.1021/jm049706k.
  • Abdella, A. M.; Mohamed, M. F.; Mohamed, A. F.; Elwahy, A. H. M.; Abdelhamid, I. A. Novel Bis(Dihydropyrano[3,2-c]Chromenes): Synthesis, Antiproliferative Effect and Molecular Docking Simulation. J. Heterocyclic Chem. 2018, 55, 498–507. DOI: 10.1002/jhet.3072.
  • Mohamed, M. F.; Abdelmoniem, A. M.; Elwahy, A. H. M.; Abdelhamid, I. A. DNA Fragmentation, Cell Cycle Arrest, and Docking Study of Novel Bis Spiro-Cyclic 2-Oxindole of Pyrimido[4,5-b]Quinoline-4,6-Dione Derivatives Against Breast Carcinoma. Curr. Cancer Drug Targets. 2018, 18, 372–381. DOI: 10.2174/1568009617666170630143311.
  • Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P.; Khan, S. R. Anticancer Activities of Novel Chalcone and Bis-Chalcone Derivatives. Bioorg. Med. Chem. 2006, 14, 3491–3495. DOI: 10.1016/j.bmc.2006.01.003.
  • Abou-Seri, S. M. Synthesis and Biological Evaluation of Novel 2,4’-Bis Substituted Diphenylamines as Anticancer Agents and Potential Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Eur. J. Med. Chem. 2010, 45, 4113–4121. DOI: 10.1016/j.ejmech.2010.05.072.
  • Antonini, I.; Polucci, P.; Magnano, A.; Gatto, B.; Palumbo, M.; Menta, E.; Pescalli, N.; Martelli, S. Design, Synthesis, and Biological Properties of New Bis(Acridine-4-Carboxamides) as Anticancer Agents. J. Med. Chem. 2003, 46, 3109–3115. DOI: 10.1021/jm030820x.
  • Raasch, A.; Scharfenstein, O.; Tränkle, C.; Holzgrabe, U.; Mohr, K. Elevation of Ligand Binding to Muscarinic M 2 Acetylcholine Receptors by Bis(Ammonio)Alkane-Type Allosteric Modulators. J. Med. Chem. 2002, 45, 3809–3812. DOI: 10.1021/jm020871e.
  • Jain, M.; Sakhuja, R.; Khanna, P.; Bhagat, S.; Jain, S. A Facile Synthesis of Novel Unsymmetrical Bis-Spiro -2, 4’-Diones. Arkivoc. 2008, 2008, 54–64. DOI: 10.3998/ark.5550190.0009.f07.
  • Yang, G. Y.; Oh, K.-A.; Park, N.-J.; Jung, Y.-S. New Oxime Reactivators Connected with CH2O(CH2)NOCH2 Linker and Their Reactivation Potency for Organophosphorus Agents-Inhibited Acetylcholinesterase. Bioorg. Med. Chem. 2007, 15, 7704–7710. DOI: 10.1016/j.bmc.2007.08.056.
  • Di Giacomo, B.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannacci, M.; Lucini, V. Synthesis and Biological Activity of New Melatonin Dimeric Derivatives. Bioorg. Med. Chem. 2007, 15, 4643–4650. DOI: 10.1016/j.bmc.2007.03.080.
  • Wang, C.; Jung, G.-Y.; Batsanov, A. S.; Bryce, M. R.; Petty, M. C. New Electron-Transporting Materials for Light Emitting Diodes: 1,3,4-Oxadiazole–Pyridine and 1,3,4-Oxadiazole–Pyrimidine Hybrids. J. Mater. Chem. 2002, 12, 173–180. DOI: 10.1039/b106907c.
  • Wang, C.; Jung, G.-Y.; Hua, Y.; Pearson, C.; Bryce, M. R.; Petty, M. C.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K. An Efficient Pyridine- and Oxadiazole-Containing Hole-Blocking Material for Organic Light-Emitting Diodes: Synthesis, Crystal Structure, and Device Performance. Chem. Mater. 2001, 13, 1167–1173. DOI: 10.1021/cm0010250.
  • Brauch, S.; van Berkel, S. S.; Westermann, B. Higher-Order Multicomponent Reactions: Beyond Four Reactants. Chem. Soc. Rev. 2013, 42, 4948–4962. DOI: 10.1039/c3cs35505e.
  • Shaaban, M. R.; Elwahy, A. H. M. Synthesis of Furo-, Pyrrolo-, and Thieno-Fused Heterocycles by Multi-Component Reactions (Part 1). Curr. Org. Synth. 2013, 10, 425–466. DOI: 10.2174/1570179411310030007.
  • Shaaban, M. R.; Elwahy, A. H. M. Synthesis of Oxazolo-, Thiazolo-, Pyrazolo-, and Imidazo-Fused Heterocycles by Multi-Component Reactions (Part 2). Curr. Org. Synth. 2014, 11, 471–525. DOI: 10.2174/15701794113106660076.
  • Elwahy, A. H.; Shaaban, M. R. Synthesis of Pyrido- and Pyrimido-Fused Heterocycles by Multi-Component Reactions (Part 3). Curr. Org. Synth. 2014, 11, 835–873. DOI: 10.2174/157017941106141023114039.
  • Gore, R. P.; Rajput, A. P. A Review on Recent Progress in Multicomponent Reactions of Pyrimidine Synthesis. Drug Invent. Today. 2013, 5, 148–152. DOI: 10.1016/j.dit.2013.05.010.
  • Zhu, J.; Bienayme, H. Multicomponent Reactions; Weinheim: John Wiley & Sons, 2006.
  • Chebanov, V. A.; Muravyova, E. A.; Shishkina, S. V.; Musatov, V. I.; Knyazeva, I. V.; Shishkin, O. V.; Desenko, S. M. Chemoselectivity of Multicomponent Condensations of Barbituric Acids, 5-Aminopyrazoles, and Aldehydes. Synthesis. 2009, 2009(8), 1375–1385. DOI: 10.1055/s-0028-1088024.
  • Sunderhaus, J. D.; Martin, S. F. Applications of Multicomponent Reactions to the Synthesis of Diverse Heterocyclic Scaffolds. Chem. Eur. J. 2009, 15, 1300–1308. DOI: 10.1002/chem.200802140.
  • Isambert, N.; Duque, M. del M. S.; Plaquevent, J.-C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis. Chem. Soc. Rev. 2011, 40, 1347–1357. DOI: 10.1039/C0CS00013B.
  • Abdelmoniem, A. M.; Ghozlan, S. A. S.; Abdelmoniem, D. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Facile One-Pot, Three-Component Synthesis of Novel Bis-Heterocycles Incorporating 5H-Chromeno[2,3-b]Pyridine-3-Carbonitrile Derivatives. J. Heterocyclic. Chem. 2017, 54, 2844–2849. DOI: 10.1002/jhet.2890.
  • Abdella, A. M.; Moatasim, Y.; Ali, M. A.; Elwahy, A. H. M.; Abdelhamid, I. A. Synthesis and anti-Influenza Virus Activity of Novel Bis(4H-Chromene-3-Carbonitrile) Derivatives. J. Heterocyclic Chem. 2017, 54, 1854–1862. DOI: 10.1002/jhet.2776.
  • El-Fatah, N. A. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Regioselective Synthesis and Theoretical Studies of Novel Bis(Tetrahydro[1,2,4]Triazolo[5,1-b]Quinazolin-8(4H)-Ones) Catalyzed by ZnO Nanoparticles. Monatsh Chem. 2017, 148, 2107–2122. DOI: 10.1007/s00706-017-2040-7.
  • Eid, E. M.; Hassaneen, H. M. E.; Abdelhamid, I. A.; Elwahy, A. H. M. Facile One‐Pot, Three‐Component Synthesis of Novel Bis(Heterocycles) Incorporating Thieno[2,3‐ b] Thiophenes via Michael Addition Reaction. J. Heterocyclic. Chem. 2020, 57, 2243–2255. DOI: 10.1002/jhet.3945.
  • Abdella, A. M.; Abdelmoniem, A. M.; Abdelhamid, I. A.; Elwahy, A. H. M. Synthesis of Heterocyclic Compounds via Michael and Hantzsch Reactions. J. Heterocycl. Chem. 2020, 57, 1476–1523. DOI: 10.1002/jhet.3883.
  • Elnagdi, M. H.; Al-Awadi, N. A.; Abdelhamid, I. A. Chapter 1 Recent Developments in Pyridazine and Condensed Pyridazine Synthesis. Adv. Heterocycl. Chem. 2009, 97, 1–43. DOI: 10.1016/S0065-2725(08)00201-8.
  • Saleh, F. M.; Hassaneen, H. M.; Abdelhamid, I. A. Hantzsch-Like Three-Component Synthesis of 9,10-Dihydro-3H-10a-Azaphenanthrene-2,4-Dicarbonitriles. Synlett. 2020, 31, 1126–1128. DOI: 10.1055/s-0039-1690902.
  • Abdelmoniem, A. M.; Sroor, F. M.; Ramadan, M. A.; Ghozlan, S. A. S.; Abdelhamid, I. A. Hantzsch-Like One-Pot Three-Component Synthesis of Heptaazadicyclopenta [a, j] Anthracenes: A New Ring System. Synlett. 2020, 31, 895–898. DOI: 10.1055/s-0040-1708001.
  • Fares, I. M. Z.; Mekky, A. E. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Microwave-Assisted Three Component Synthesis of Novel Bis-Fused Quinazolin-8(4H)-Ones Linked to Aliphatic or Aromatic Spacer via Amide Linkages. Synth. Commun. 2020, 50, 893–903. DOI: 10.1080/00397911.2020.1725575.
  • Sanad, S. M. H.; Hawass, M. A. E.; Elwahy, A. H. M.; Abdelhamid, I. A. Hantzsch Synthesis of Bis(1,4-Dihydropyridines) and Bis(Tetrahydrodipyrazolo[3,4-b:4′,3′-e]Pyridines) Linked to Pyrazole Units as Novel Hybrid Molecules. Synth. Commun. 2020, 50, 1982–1992. DOI: 10.1080/00397911.2020.1761395.
  • Eid, E. M.; Hassaneen, H. M. E.; Elwahy, A. H. M.; Abdelhamid, I. A. Hantzsch-like Synthesis of Novel Bis(Hexahydroacridine-1,8-Diones), Bis(Tetrahydrodipyrazolo[3,4- B:4′,3′- e] Pyridines), and Bis(Pyrimido[4,5- b] Quinolines) Incorporating Thieno[2,3- b] Thiophenes. J. Chem. Res. 2020, 44 (11-12), 653–659. DOI: 10.1177/1747519820917886.
  • Abdella, A. M.; Abdelmoniem, A. M.; Ibrahim, N. S.; El-Hallouty, S. M.; Abdelhamid, I. A.; Elwahy, A. H. M. Synthesis, and Molecular Docking Stimulation of Novel Bis-1,4-Dihydropyridines Linked to Aliphatic or Arene Core via Amide or Ester-Amide Linkages. MRMC. 2020, 20, 801–816. DOI: 10.2174/1389557519666190919160019.
  • Mekky, A. E. M.; Elwahy, A. H. M. Synthesis of Novel Benzo-Substituted Macrocyclic Ligands Containing Thienothiophene Subunits. J. Heterocyclic Chem. 2014, 51, E34–E41. DOI: 10.1002/jhet.2012.
  • Sayed, O. M.; Mekky, A. E. M.; Farag, A. M.; Elwahy, A. H. M. 3,4-Dimethyl-2,5-Functionalized Thieno[2,3-b[Thiophenes: Versatile Precursors for Novel Bis-Thiazoles. J. Sulfur Chem. 2015, 36, 124–134. DOI: 10.1080/17415993.2014.975131.
  • Sayed, O. M.; Mekky, A. E. M.; Farag, A. M.; Elwahy, A. H. M. 3,4-Bis(Bromomethyl)Thieno[2,3-b]Thiophene: Versatile Precursors for Novel Bis(Triazolothiadiazines), Bis(Quinoxalines), Bis(Dihydrooxadiazoles), and Bis(Dihydrothiadiazoles). J. Heterocyclic Chem. 2016, 53, 1113–1120. DOI: 10.1002/jhet.2373.
  • Elwahy, A. H. M.; Abbas, A. A. Synthesis of New Benzo-Substituted Macrocyclic Ligands Containing Pyridine or Triazole as Subcyclic Units. Tetrahedron. 2000, 56, 885–895. DOI: 10.1016/S0040-4020(99)01068-6.
  • Elwahy, A. H. M.; Abbas, A. A.; Kassab, R. M. Unexpected Synthesis of Novel Condensed Heteromacrocycles. Synthesis. 2004, 2002, 260–264.
  • Elwahy, A. H. M.; Abbas, A. A. Bis(β-Difunctional) Compounds: Versatile Starting Materials for Novel Bis(Heterocycles). Synth. Commun. 2000, 30, 2903–2921. DOI: 10.1080/00397910008087441.
  • Abd El-Fatah, N. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Experimental and Theoretical Study on the Regioselective Bis- and Polyalkylation of 2-Mercaptonicotinonitrile and 2-Mercaptopyrimidine-5-Carbonitrile Derivatives. Tetrahedron. 2017, 73, 1436–1450. DOI: 10.1016/j.tet.2017.01.047.
  • Sroor, F. M.; Aboelenin, M. M.; Mahrous, K. F.; Mahmoud, K.; Elwahy, A. H. M.; Abdelhamid, I. A. Novel 2-Cyanoacrylamido-4,5,6,7-Tetrahydrobenzo[b]Thiophene Derivatives as Potent Anticancer Agents. Arch Pharm. 2020, 353, 2000069. DOI: 10.1002/ardp.202000069.
  • Ghozlan, S. A. S.; Abdelhamid, I. A.; Hassaneen, H. M.; Elnagdi, M. H. Studies with Enamines and Azaenamines: A Novel Efficient Route to 6 -Amino -1,4 -Dihydropyridazines and Their Condensed Derivatives. J. Heterocycl. Chem. 2007, 44, 105–108. DOI: 10.1002/jhet.5570440118.
  • Ghozlan, S. A. S.; Mohamed, M. F.; Ahmed, A. G.; Shouman, S. A.; Attia, Y. M.; Abdelhamid, I. A. Cytotoxic and Antimicrobial Evaluations of Novel Apoptotic and Anti-Angiogenic Spiro Cyclic 2-Oxindole Derivatives of 2-Amino-Tetrahydroquinolin-5-One. Arch. Pharm. Chem. Life Sci. 2015, 348, 113–124. DOI: 10.1002/ardp.201400304.
  • Abdelhamid, I. A. Synthesis of Novel Spiro Cyclic 2-Oxindole Derivatives of 6-Amino-4H-Pyrida- Zine via [3 + 3] Atom Combination Utilizing Chitosan as a Catalyst. Synlett. 2009, 2009, 625–627. DOI: 10.1055/s-0028-1087558.
  • Abdelhamid, I. A.; Mohamed, M. H.; Abdelmoniem, A. M.; Ghozlan, S. A. S. DBU-Catalyzed, Facile and Efficient Method for Synthesis of Spirocyclic 2-Oxindole Derivatives with Incorporated 6-Amino-4H-Pyridazines and Fused Derivatives via [3 + 3] Atom Combination. Tetrahedron. 2009, 65, 10069–10073. DOI: 10.1016/J.TET.2009.09.081.
  • Ghozlan, S. A. S.; Ahmed, A. G.; Abdelhamid, I. A. Regioorientation in the Addition Reaction of α-Substituted Cinnamonitrile to Enamines Utilizing Chitosan as a Green Catalyst: Unambiguous Structural Characterization Using 2D-HMBC NMR Spectroscopy. J. Heterocyclic Chem. 2016, 53, 817–823. DOI: 10.1002/jhet.2341.
  • Ghozlan, S. A. S.; Abdelmoniem, A. M.; Butenschön, H.; Abdelhamid, I. A. Discrepancies in the Reactivity Pattern of Azaenamines towards Cinnamonitriles: Synthesis of Novel Aza-Steroid Analogues. Tetrahedron. 2015, 71, 1413–1418. DOI: 10.1016/j.tet.2015.01.026.
  • Ghozlan, S. A. S.; Mohamed, M. H.; Abdelmoniem, A. M.; Abdelhamid, I. A. Synthesis of Pyridazines and Fused Pyridazines via [3 + 3] Atom Combination Using Chitosan as a Green Catalyst. Arkivoc. 2009, 2009, 302–311. DOI: 10.3998/ark.5550190.0010.a27.
  • Al-Awadi, N. A.; Ibrahim, M. R.; Abdelhamid, I. A.; Elnagdi, M. H. Arylhydrazonals as the Aldehyde Component in Baylis-Hillman Reactions. Tetrahedron. 2008, 64, 8202–8205. DOI: 10.1016/j.tet.2008.06.026.
  • Abdelmoniem, Amr M., Ghozlan, Said A. S., Butenschön, Holger, Abdelmoniem, Doaa M., Elwahy, Ahmed H. M., Abdelhamid, Ismail A., An Efficient One-Pot Three-Component Synthesis of Tetrakis(Uracil) and Their Corresponding Bis-Fused Derivatives. Arkivoc. 2019, 2019, 163–177. DOI: 10.24820/ark.5550190.p010.875.
  • Poojary, M. M.; Putnik, P.; Bursać Kovačević, D.; Barba, F. J.; Lorenzo, J. M.; Dias, D. A.; Shpigelman, A. Stability and Extraction of Bioactive Sulfur Compounds from Allium Genus Processed by Traditional and Innovative Technologies. J. Food Compos. Anal. 2017, 61, 28–39. DOI: 10.1016/j.jfca.2017.04.007.
  • Cai, S.; King, J. B.; Du, L.; Powell, D. R.; Cichewicz, R. H. Bioactive Sulfur-Containing Sulochrin Dimers and Other Metabolites from an Alternaria Sp. Isolate from a Hawaiian Soil Sample. J. Nat. Prod. 2014, 77, 2280–2287. DOI: 10.1021/np5005449.
  • El Ashry, E. S. H.; El Tamany, E. S. H.; El Fattah, M. E. D. A.; Boraei, A. T. A.; Abd El-Nabi, H. M. Regioselective Synthesis, Characterization and Antimicrobial Evaluation of S-Glycosides and S,N-Diglycosides of 1,2-Dihydro-5-(1H-Indol-2-Yl)-1,2,4-Triazole-3-Thione. Eur. J. Med. Chem. 2013, 66, 106–113. DOI: 10.1016/j.ejmech.2013.04.047.
  • Lin, H.; Danishefsky, S. J. Gelsemine: A Thought-Provoking Target for Total Synthesis. Angew. Chem. Int. Ed. 2003, 42, 36–51. DOI: 10.1002/anie.200390048.
  • Marti, C.; Carreira, E. M. Construction of Spiro[Pyrrolidine-3,3′-Oxindoles] − Recent Applications to the Synthesis of Oxindole Alkaloids. Eur. J. Org. Chem. 2003, 2003, 2209–2219. DOI: 10.1002/ejoc.200300050.
  • Williams, R. M.; Cox, R. J. Paraherquamides, Brevianamides, and Asperparalines: Laboratory Synthesis and Biosynthesis. An Interim Report. Acc. Chem. Res. 2003, 36, 127–139. DOI: 10.1021/ar020229e.
  • Galliford, C. V; Scheidt, K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. DOI: 10.1002/anie.200701342.
  • Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. Total Synthesis of Spirotryprostatin A, Leading to the Discovery of Some Biologically Promising Analogues. J. Am. Chem. Soc. 1999, 121, 2147–2155. DOI: 10.1021/ja983788i.
  • Abdelmoniem, A. M.; Hassaneen, H. M. E.; Abdelhamid, I. A. An Efficient One-Pot Synthesis of Novel Spiro Cyclic 2-Oxindole Derivatives of Pyrimido[4,5-b]Quinoline, Pyrido[2,3-d:6,5-D′] Dipyrimidine and Indeno[2′,1′:5,6]Pyrido [2,3-d]Pyrimidine in Water. J. Heterocyclic Chem. 2016, 53, 2084–2090. DOI: 10.1002/jhet.2480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.