Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 3
228
Views
0
CrossRef citations to date
0
Altmetric
Articles

Potassium base-catalyzed redox isomerization of propargylic alcohols to chalcones

ORCID Icon &
Pages 198-204 | Received 17 Sep 2022, Published online: 11 Jan 2023

References

  • For reviews, see: (a) Batovska, D. I.; Todorova, I. T. Trends in Utilization of the Pharmacological Potential of Chalcones. Curr. Clin. Pharmacol. 2010, 5, 1–29. DOI: 10.2174/157488410790410579; (b) Sahu, N. K.; Balbhadra, S. S.; Choudhary, J.; Kohli, D. V. Exploring Pharmacological Significance of Chalcone Scaffold: A Review. CMC. 2012, 19, 209–225. DOI: 10.2174/092986712803414132; (c) Singh, P.; Anand, A.; Kumar, V. Recent Developments in Biological Activities of Chalcones: A Mini Review. Eur. J. Med. Chem. 2014, 85, 758–777. DOI: 10.1016/j.ejmech.2014.08.033; (d) Zhou, B.; Xing, C. Diverse Molecular Targets for Chalcones with Varied Bioactivities. Med. Chem. 2015, 5, 388–404. DOI: 10.4172/2161-0444.1000291; (e) Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. DOI: 10.1021/acs.chemrev.7b00020.
  • For selected examples, see: (a) Lee, S.-C.; Kang, N.-Y.; Park, S.-J.; Yun, S.-W.; Chandran, Y.; Chang, Y.-T. Development of a Fluorescent Chalcone Library and Its Application in the Discovery of a Mouse Embryonic Stem Cell Probe. Chem. Commun. 2012, 48, 6681–6683. DOI: 10.1039/c2cc31662e; (b) Tomasch, M.; Schwed, J. S.; Weizel, L.; Stark, H. Novel Chalcone-Based Fluorescent Human Histamine H3 Receptor Ligands as Pharmacological Tools. Front. Syst. Neurosci. 2012, 6, 1–16. DOI: 10.3389/fnsys.2012.00014; (c) Zhou, B.; Jiang, P.; Lu, J.; Xing, C. Characterization of the Fluorescence Properties of 4-Dialkylaminochalcones and Investigation of the Cytotoxic Mechanism of Chalcones. Arch. Pharm. Chem. Life Sci. 2016, 349, 539–552. DOI: 10.1002/ardp.201500434; (d) Wangngae, S.; Pewklang, T.; Chansaenpak, K.; Ganta, P.; Worakaensai, S.; Siwawannapong, K.; Kluaiphanngam, S.; Nantapong, N.; Lai, R.-Y.; Kamkaew, A. A Chalcone-Based Fluorescent Responsive Probe for Selective Detection of Nitroreductase Activity in Bacteria. New J. Chem. 2021, 45, 11566–11573. DOI: 10.1039/D1NJ01794B.
  • For reviews on the Meyer–Schuster rearrangement, see: (a) Swaminathan, S.; Narayanan, K. V. The Rupe and Meyer–Schuster Rearrangements. Chem. Rev 1971, 71, 429–438; (b) Engel, D. A.; Dudley, G. B. The Meyer–Schuster Rearrangement for the Synthesis of a,b-Unsaturated Carbonyl Compounds. Org. Biomol. Chem. 2009, 7, 4149–4158. DOI: 10.1039/b912099h; (c) Cadierno, V.; Crochet, P.; García-Garrido, S. E.; Gimeno, J. Metal-Catalyzed Transformations of Propargylic Alcohols into a,b-Unsaturated Carbonyl Compounds: From the Meyer–Schuster and Rupe Rearrangements to Redox Isomerizations. Dalton Trans. 2010, 39, 4015–4031./b923602c; (d) Justaud, F.; Hachem, A.; Grée, R. Recent Developments in the Meyer–Schuster Rearrangement. Eur. J. Org. Chem. 2021, 2021, 514–542. DOI: 10.1002/ejoc.202001494.
  • (a) Zheng, H.; Lejkowski, M.; Hall, D. G. Mild and Selective Boronic Acid Catalyzed 1,3-Transposition of Allylic Alcohols and Meyer–Schuster Rearrangement of Propargylic Alcohols. Chem. Sci. 2011, 2, 1305–1310. DOI: 10.1039/c1sc00140j; (b) Park, J.; Yun, J.; Kim, J.; Jang, D.-J.; Park, C. H.; Lee, K. Brønsted Acid–Catalyzed Meyer–Schuster Rearrangement for the Synthesis of a,b-Unsaturated Carbonyl Compounds. Synth. Commun. 2014, 44, 1924–1929. DOI: 10.1080/00397911.2013; (c) Kang, Y.-W.; Cho, Y. J.; Han, S. J.; Jang, H.-Y. Tunable and Diastereoselective Brønsted Acid Catalyzed Synthesis of b-Enaminones. Org. Lett. 2016, 18, 272–275. DOI: 10.1021/acs.orglett.5b03445.
  • For a review, see: Trost, Barry M. Redox Isomerization of Propargyl Alcohols to Enones. In Modern. Alkyne Chemistry: Catalytic and Atom-Economic Transformations; Trost, B. M., Li, C.-J., Eds.; Wiley-VCH, 2015, pp 9–26.
  • For selected reports on base-promoted redox isomeization of propargylic alcohols, see: (a) Cho, C. S.; Seok, H. J.; Shim, S. C. Isomerization of 1,3-Diarylprop-2-yn-1-Ols to Chalcones in the Presence of Potassium Hydroxide. Bull. Korean Chem. Soc. 2005, 26, 1107–1108; (b) Yamazaki, T.; Kawasaki-Takasuka, T.; Furuta, A.; Sakamoto, S. Facile Conversion of 4,4,4-Trifluorobut-2-yn-1-Ols to 4,4,4-Trifluorobut-2-en-1-Ones. Tetrahedron 2009, 65, 5945–5948. DOI: 10.1016/j.tet.2009.05.087; (c) Watanabe, Y.; Yamazaki, T. Application of Mitsunobu Reagents to Redox Isomerization of CF3-Containing Propargylic Alcohols to (E)-a,b-Enones. J. Org. Chem. 2011, 76, 1957–1960. DOI: 10.5012/bkcs.2005.26.7.1107; (d) Tiruveedhula, V. V. N. P. B.; Witzigmann, C. M.; Verma, R.; Kabir, M. S.; Rott, M.; Schwan, W. R.; Medina-Bielski, S.; Lane, M.; Close, W.; Polanowski, R. L.; et al. Design and Synthesis of Novel Antimicrobials with Activity against Gram-Positive Bacteria and Mycobacterial Species, Including M. tuberculosis. Bioorg. Med. Chem. 2013, 21, 7830–7840. DOI: 10.1016/j.bmc.2013.10.011; (e) Sieng, B.; Maldonado, M. F.; Romagnoli, C.; Amedjkouh, M. One-Pot Alkynylation of Azaaryl Aldehydes and Spontaneous Base-Free Rearrangement into Enone Esters: An Autoinductive Mechanism. Eur. J. Org. Chem. 2018, 2018, 1491–1495. DOI: 10.1002/ejoc.201701566.
  • (a) Chen, J.; Fan, G.; Liu, Y. Stereoselective Synthesis of Enynones via Base-Catalyzed Isomerization of 1,5-Disubstituted-2,4-Pentadiynyl Silyl Ethers or Their Alcohol Derivatives. Org. Biomol. Chem. 2010, 8, 4806–4810. DOI: 10.1039/c0ob00344a; (b) Wang, Y.-H.; Liu, H.; Zhu, L.-L.; Li, X.-X.; Chen, Z. Base-Catalyzed Cascade 1,3-H Shift/Cyclization Reaction to Construct Polyaromatic Furans. Adv. Synth. Catal. 2011, 353, 707–712. DOI: 10.1002/adsc.201000833.
  • For base-catalyzed redox isomerization of propargylic alcohols, see: (a) Sonye, J. P.; Koide, K. On the Mechanism of DABCO-Catalyzed Isomerization of g-Hydroxy-a,b-Alkynoates to g-Oxo-a,b-(E)-Alkenoates. Org. Lett. 2006, 8, 199–202. DOI: 10.1021/ol052376t; (b) Sonye, J. P.; Koide, K. Organic Base-Catalyzed Stereoselective Isomerizations of 4-Hydroxy-4-Phenyl-but-2-Ynoic Acid Methyl Ester to (E)- and (Z)-4-Oxo-4-Phenyl-but-2-Enoic Acid Methyl Esters. Synth. Commun. 2006, 36, 599–602; (c) Sonye, J. P.; Koide, K. Base-Catalyzed Stereoselective Isomerization of Electron-Deficient Propargylic Alcohols to E-Enones. J. Org. Chem. 2006, 71, 6254–6257. DOI: 10.1021/jo060304p; (d) Sonye, J. P.; Koide, K. Sodium Bicarbonate-Catalyzed Stereoselective Isomerizations of Electron-Deficient Propargylic Alcohols to (Z)-Enones. J. Org. Chem. 2007, 72, 1846–1848. DOI: 10.1021/jo0623944.
  • (a) Sai, M.; Kurouchi, H. Potassium Base‐Catalyzed Michael Additions of Allylic Alcohols to a,b‐Unsaturated Amides: Scope and Mechanistic Insights. Adv. Synth. Catal. 2021, 363, 3585–3591. DOI: 10.1002/adsc.202100272; (b) Sai, M. Potassium Base‐Promoted Diastereoselective Synthesis of 1,3‐Diols from Allylic Alcohols and Aldehydes through a Tandem Allylic‐Isomerization/Aldol–Tishchenko Reaction. Chem. Asian J. 2021, 16, 4053–4056. DOI: 10.1002/asia.202101093; (c) Sai, M. KOtBu/DMSO Catalytic System for Isomerization of Allylic Alcohols to Ketones. Eur. J. Org. Chem. 2022, 2022, e202200052. DOI: 10.1002/ejoc.202200052.
  • The reaction of alkyl-substituted propargylic alcohols resulted in the recovery of the starting material or afforded a complex mixture.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.