Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 2
242
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of novel hybrid 1,5-disusbtituted 1H-tetrazol-5yl 4,5-dihydro [1,2,3]triazolo[1,5-a]pyrazin-6-ones via high-order MCR-SN2/intramolecular [3 + 2] cycloaddition sequence

, , , , , ORCID Icon & ORCID Icon show all
Pages 127-134 | Received 27 Jul 2022, Published online: 08 Dec 2022

References

  • Some recent reviews about I-MCR/post-condensation processes see: (a) Song, L.; Cai, L.; Van der Eycken, E. V. Molecules 2022, 27, 1–13. DOI: 10.3390/molecules27103105. (b) Krasavin, M.; Dar’in, D.; Balalaie, S. Post-Condensational Modifications of the Groebke‐Blackburn‐Bienaymé Reaction Products for Scaffold-Oriented Synthesis. Tetrahedron Lett. 2021, 86, 153521. DOI: 10.1016/j.tetlet.2021.153521. (c) Fouad, M. A.; Abdel-Hamid, H.; Ayoup, M. S. Two Decades of Recent Advances of Ugi Reactions: Synthetic and Pharmaceutical Applications. RSC Adv. 2020, 10, 42644–42681. DOI: 10.1039/D0RA07501A. (d) Heravi, M. M.; Mohammadkhani, L. Adv. Heterocycl. Chem. 2020, 131, 351–403. DOI: 10.1016/bs.aihch.2019.04.001. (e) Mohammadkhani, L.; Heravi, M. M. Synthesis of N-Heterocycles Containing 1,5-Disubstituted-1H-Tetrazole via post-Ugi-Azide Reaction. Mol. Divers. 2020, 24, 841–853. DOI: 10.1007/s11030-019-09972-1.
  • (a) Bhat, S. I. Chem. Select. 2020, 5, 8040–8061. DOI: 10.1002/slct.202002154. (b) Neochoritis, C. G.; Zhao, T.; Dömling, A. Chem. Rev. 2019, 3, 1970–2042. DOI: 10.1021/acs.chemrev.8b00564. (c) Ibarra, I.; Islas-Jácome, A.; González-Zamora, E. Synthesis of Polyheterocycles via Multicomponent Reactions. Org. Biomol. Chem. 2018, 16, 1402–1418. DOI: 10.1039/C7OB02305G.
  • (a) Alkhzem, A. H.; Woodman, T. J.; Blagbrough, I. S. Design and Synthesis of Hybrid Compounds as Novel Drugs and Medicines. RSC Adv. 2022, 12, 19470–19484. DOI: 10.1039/D2RA03281C. (b) Kumar, H. M. S.; Herrmann, L.; Tsogoeva, S. B. Structural Hybridization as a Facile Approach to New Drug Candidates. Bioorg. Med. Chem. Lett. 2020, 30, 127514. DOI: 10.1016/j.bmcl.2020.127514. (c) Ivasiv, V.; Albertini, C.; Gonçalves, A. E.; Rossi, M.; Bolognesi, M. L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. CTMC. 2019, 19, 1694–1711. DOI: 10.2174/1568026619666190619115735. (d) Abbot, V.; Sharma, P.; Dhiman, S.; Noolvi, M. N.; Patel, H. M.; Bhardwaj, V. Small Hybrid Heteroaromatics: Resourceful Biological Tools in Cancer Research. RSC Adv. 2017, 7, 28313–28349. DOI: 10.1039/C6RA24662A. (e) Mishra, S.; Singh, P. Hybrid Molecules: The Privileged Scaffolds for Various Pharmaceuticals. Eur. J. Med. Chem. 2016, 124, 500–536. DOI: 10.1016/j.ejmech.2016.08.039.
  • (a) Bozorov, K.; Zhao, J.; Aisa, H. A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. DOI: 10.1016/j.bmc.2019.07.005. (b) Wang, S.; Wang, Y.; Xu, Z. Tetrazole Hybrids and Their Antifungal Activities. Eur. J. Med. Chem. 2019, 170, 225–234. DOI: 10.1016/j.ejmech.2019.03.023. (c) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. DOI: 10.1002/asia.201100432.
  • (a) Myznikov, L. V.; Vorona, S. V.; Zevatskii, Y. E. Biologically Active Compounds and Drugs in the Tetrazole Series. Chem. Heterocycl. Comp. 2021, 57, 224–233. DOI: 10.1007/s10593-021-02897-4. (b) Leyva-Ramos, S.; Cardoso-Ortiz, J. Curr. Org. Chem. 2021, 25, 388–403. DOI: 10.2174/1385272824999201210193344. (c) Varala, R.; Bollikolla, H. B.; Kurmarayuni, C. M. Synthesis of Pharmacological Relevant 1,2,3-Triazole and Its Analogues-A Review. Curr. Org. Synth. 2021, 18, 101–124. DOI: 10.2174/1570179417666200914142229. (d) Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Chem. 2017, 71, 30–54. DOI: 10.1016/j.bioorg.2017.01.010.
  • References of figure 1: (a) Hochegger, P.; Dolensky, J.; Seebacher, W.; Saf, R.; Kaiser, M.; Mäser, P.; Weis, R. 8-Amino-6-Methoxyquinoline—Tetrazole Hybrids: Impact of Linkers on Antiplasmodial Activity. Molecules. 2021, 26, 5530–5513. DOI: 10.3390/molecules26185530. (b) Kumar, C. B. P.; Prathibha, B. S.; Prasad, K. N. N.; Raghu, M. S.; Prashanth, M. K.; Jayanna, B. K.; Alharthi, F. A.; Chandrasekhar, S.; Revanasiddappa, H. D.; Kumar, K. Y. Click Synthesis of 1,2,3-Triazole Based Imidazoles: Antitubercular Evaluation, Molecular Docking and HSA Binding Studies. Bioorg. Med. Chem. Lett. 2021, 36, 127810. DOI: 10.1016/j.bmcl.2021.127810. (c) Kushwaha, P.; Fatima, S.; Upadhyay, A.; Gupta, S.; Bhagwati, S.; Baghel, T.; Siddiqi, M. I.; Nazir, A.; Sashidhara, K. V. Synthesis, Biological Evaluation and Molecular Dynamic Simulations of Novel Benzofuran-Tetrazole Derivatives as Potential Agents against Alzheimer’s Disease. Bioorg. Med. Chem. Lett. 2019, 29, 66–72. DOI: 10.1016/j.bmcl.2018.11.005. (d) Rajan, S.; Puri, S.; Kumar, D.; Babu, M. H.; Shankar, K.; Varshney, S.; Srivastava, A.; Gupta, A.; Reddy, M. S.; Gaikwad, A. N. Novel Indole and Triazole Based Hybrid Molecules Exhibit Potent anti-Adipogenic and Antidyslipidemic Activity by Activating Wnt3a/β-Catenin Pathway. Eur. J. Med. Chem. 2018, 143, 1345–1360. DOI: 10.1016/j.ejmech.2017.10.034. (e) Aouad, M. R.; Soliman, M. A.; Alharbi, M. O.; Bardaweel, S. K.; Sahu, P. K.; Ali, A. A.; Messali, M.; Rezki, N.; Al-Soud, Y. A. Design, Synthesis and Anticancer Screening of Novel Benzothiazole-Piperazine-1,2,3-Triazole Hybrids. Molecules. 2018, 23, 2788–2714. DOI: 10.3390/molecules23112788. (f) Chauhan, K.; Singh, P.; Kumar, V.; Shukla, P. K.; Siddiqi, M. I.; Chauhan, P. M. S. Investigation of Ugi-4CC Derived 1H-Tetrazol-5-yl-(Aryl) Methyl Piperazinyl-6-Fluoro-4-Oxo-1,4-Dihydroquinoline-3-Carboxylic Acid: Synthesis, Biology and 3D-QSAR Analysis. Eur. J. Med. Chem. 2014, 78, 442–454. DOI: 10.1016/j.ejmech.2014.03.069.
  • (a) Aguilar-Morales, C. M.; Araujo-Huitrado, J. G.; López-Hernández, Y.; Contreras-Celedón, C.; Islas-Jácome, A.; Granados-López, A. J.; Solorio-Alvarado, C. R.; López, J. A.; Chacón-García, L.; Cortés-García, C. J. A One-Pot Six-Component Reaction for the Synthesis of 1,5-Disubstituted Tetrazol-1,2,3-Triazole Hybrids and Their Cytotoxic Activity against the MCF-7 Cell Line. Molecules. 2021, 26, 6104. DOI: 10.3390/molecules26206104. (b) Aguilar-Morales, C. M.; de Loera, D.; Contreras-Celedón, C.; Cortés-García, C. J.; Chacón-García, L. Synthesis of 1,5-Disubstituted Tetrazole-1,2,3 Triazoles Hybrids via Ugi-Azide/CuAAC. Synth. Commun. 2019, 49, 2086–2095. DOI: 10.1080/00397911.2019.1616301.
  • Brauch, S.; van Berkel, S. S.; Westermann, B. Higher-Order Multicomponent Reactions: Beyond Four Reactants. Chem. Soc. Rev. 2013, 42, 4948–4962. DOI: 10.1039/c3cs35505e.
  • Niño-Pantoja, I.; Gallardo-Alfonzo, A.; Solis-Santos, M.; Ordoñez, M.; Contreras-Celedón, C.; Islas-Jácome, A.; Chacón-García, L.; Cortés-García, C. J. Synthesis of 1,5‐Disubstituted Tetrazole − Indolizine Bis ‐Heterocycles and Their Copper (II) Recognizing Properties. Eur. J. Org. Chem. 2022, 2022, e202200230. DOI: 10.1002/ejoc.202200230.
  • Sai Sudhir, V.; Nasir Baig, R. B.; Chandrasekaran, S. Facile Entry to 4,5,6,7-Tetrahydro[1,2,3]Triazolo[1,5-a]Pyrazin-6-Ones from Amines and Amino Acids. Eur. J. Org. Chem. 2008, 2008, 2423–2429. DOI: 10.1002/ejoc.200800036.
  • (a) Jasiński, R. In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC Adv. 2015, 5, 101045–101048. DOI: 10.1039/C5RA20747A. (b) Fryźlewicz, A.; Kącka-Zych, A.; Demchuk, O. M.; Mirosław, B.; Woliński, P.; Jasiński, R. Green Synthesis of Nitrocyclopropane-Type Precursors of Inhibitors for the Maturation of Fruits and Vegetables via Domino Reactions of Diazoalkanes with 2-Nitroprop-1-Ene. J. Clean. Prod. 2021, 292, 126079–126079. DOI: 10.1016/j.jclepro.2021.126079. (c) Jasiński, R. A Stepwise, Zwitterionic Mechanism for the 1,3-Dipolar Cycloaddition between (Z)-C-4-methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations. Tetrahedron Lett. 2015, 56, 532–535. DOI: 10.1016/j.tetlet.2014.12.007. (d) Mlostoń, G.; Urbaniak, K.; Linden, A.; Heimgartner, H. Selenophen-2-yl-Substituted Thiocarbonyl Ylides – at the Borderline of Dipolar and Biradical Reactivity. HCA. 2015, 98, 453–461. DOI: 10.1002/hlca.201500050.
  • National Research Council. Prudent Practices in the Laboratory: Handling and Management of Chemical Hazards, Updated Version; The National Academies Press: Washington, DC, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.