Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 2
345
Views
1
CrossRef citations to date
0
Altmetric
Articles

NaCl as an eco-friendly and efficient promoter for Knoevenagel condensation at room temperature

, , &
Pages 135-145 | Received 12 May 2022, Published online: 20 Dec 2022

References

  • Zhang, H.; Li, M.; Deng, Y.; Zhang, C.; Ran, Q.; Gu, Y. A Novel Polybenzoxazine Containing Styrylpyridine Structure via the Knoevenagel Reaction. J. Appl. Polym. Sci. 2014, 131, 40823. DOI: 10.1002/app.40823.
  • David, C. C.; Lins, A.; Silva, T.; Campos, J. F.; Silva, T. G.; Militão, G. C.; Camara, C. A. Synthesis and Cytotoxicity Evaluation of a Series of 3-Alkenyl-2-Hydroxy-1,4-Naphthoquinones Obtained by an Efficient Knoevenagel Condensation. J. Braz. Chem. Soc. 2018, 30, 8–18. DOI: 10.21577/0103-5053.20180146.
  • De Paiva, R. K.; Silva, J. F. D.; Moreira, H. A.; Pinto, O. G.; Camargo, L. T.; Naves, P. L.; Camargo, A. J.; Ribeiro, L.; Ramos, L. M. Synthesis, Antimicrobial Activity and Structure-Activity Relationship of Some 5-Arylidene-Thiazolidine-2, 4-Dione Derivatives. J. Braz. Chem. Soc. 2018, 30, 164–172. DOI: 10.21577/0103-5053.20180167.
  • Unlusoy, M. C.; Kazak, C.; Bayro, O.; Verspohl, E. J.; Ertan, R.; Dundar, O. B. Synthesis and Antidiabetic Activity of 2,4-Thiazolidindione, Imidazolidinedione and 2-Thioxo-Imidazolidine-4-One Derivatives Bearing 6-Methyl Chromonyl Pharmacophore. J. Enzyme Inhib. Med. Chem. 2013, 28, 1205–1210. DOI: 10.3109/14756366.2012.723207.
  • Molnar, M.; Brahmbhatt, H.; Rastija, V.; Pavić, V.; Komar, M.; Karnaš, M.; Babić, J. Environmentally Friendly Approach to Knoevenagel Condensation of Rhodanine in Choline Chloride: Urea Deep Eutectic Solvent and QSAR Studies on Their Antioxidant Activity. Molecules 2018, 23, 1897. DOI: 10.3390/molecules23081897.
  • Khare, R.; Pandey, J.; Smriti, S.; Ruchi, R. The Importance and Applications of Knoevenagel Reaction. Orient. J. Chem. 2019, 35, 423–429. DOI: 10.13005/ojc/350154.
  • Kumari, S.; Gupta, V.; Singh, S.; Gupta, Y. K. A Review Report on Active Methylene Group in Malononitrile. Asia. J. Res. Chem. 2018, 11, 876–886. DOI: 10.5958/0974-4150.2018.00153.0.
  • Sakthivel, B.; Dhakshinamoorthy, A. Chitosan as a Reusable Solid Base Catalyst for Knoevenagel Condensation Reaction. J. Colloid Interface Sci. 2017, 485, 75–80. DOI: 10.1016/j.jcis.2016.09.020.
  • (a) Ding, Y.; Ni, X.; Gu, M.; Li, S.; Huang, H.; Hu, Y. Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Compounds Catalyzed by Lipoprotein Lipase. Catal. Commun. 2015, 64, 101–104. DOI: 10.1016/j.catcom.2015.02.007. (b) Ding, Y.; Xiang, X.; Gu, M.; Xu, H.; Huang, H.; Hu, Y. Efficient Lipase-Catalyzed Knoevenagel Condensation: utilization of Biocatalytic Promiscuity for Synthesis of Benzylidene-Indolin-2-Ones. Bioprocess. Biosyst. Eng. 2016, 39, 125–131. DOI: 10.1007/s00449-015-1496-2
  • Chtourou, M.; Lahyani, A.; Trabelsi, M. Alkaline–Modified Montmorillonite K10: An Eficiente Catalyst for Green Condensation Reaction of Aromatic Aldehydes with Active Methylene Compounds. Reac. Kinet. Mech. Cat. 2019, 126, 237–247. DOI: 10.1007/s11144-018-1495-9.
  • Zhang, Y.; Zhao, Y.; Xia, C. Basic Ionic Liquids Supported on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanocrystallites: An Efficient Magnetic and Recyclable Heterogeneous Catalyst for Aqueous Knoevenagel Condensation. J. Mol. Catal. A Chem. 2009, 306, 107–112. DOI: 10.1016/j.molcata.2009.02.032.
  • Liu, X. H.; Fan, J. C.; Liu, Y.; Shang, Z. C. L-Proline as an Efficient and Reusable Promoter for the Synthesis of Coumarins in Ionic Liquid. J. Zhejiang Univ. Sci. B 2008, 9, 990–995. DOI: 10.1631/jzus.B0820079.
  • Deb, M. L.; Bhuyan, P. J. Uncatalysed Knoevenagel Condensation in Aqueous Medium at Room Temperature. Tetrahedron Lett. 2005, 46, 6453–6456. DOI: 10.1016/j.tetlet.2005.07.111.
  • Tripodi, G. L.; Correra, T. C.; Angolini, C. F. F.; Ferreira, B. R. V.; Maître, P.; Eberlin, M. N.; Roithová, J. The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. Eur. J. Org. Chem. 2019, 2019, 3560–3566. DOI: 10.1002/Ejoc.201900171.
  • Darvishzad, S.; Daneshvar, N.; Shirini, F.; Tajik, H. Knoevenagel Condensation in Aqueous Media Promoted by 2,2′‑Bipyridinium Dihydrogen Phosphate as a Green Efficient Catalyst. Res. Chem. Intermed. 2021, 47, 2973–2984. DOI: 10.1007/s11164-021-04445-3.
  • Alirezvani, Z.; Dekamin, M. G.; Davoodi, F.; Valiey, E. Melamine-Functionalized Chitosan: A New Bio-Based Reusable Bifunctional Organocatalyst for the Synthesis of Cyanocinnamonitrile Intermediates and Densely Functionalized Nicotinonitrile Derivatives. ChemistrySelect 2018, 3, 10450–10463. DOI: 10.1002/slct.201802010.
  • Mogilaiah, K.; Prashanthi, M.; Randheer Reddy, G.; Srinivas Reddy, C.; Vasudeva Reddy, N. Microwave Assisted Knoevenagel Condensation Using Sodium Fluoride and Lithium Chloride as Catalysts under Solvent-Free Conditions. Synth. Commun. 2003, 33, 2309–2312. DOI: 10.1081/scc-120021512.
  • Yang, H.; Zhang, W.; Liu, Q. Sodium Tungstate Supported on a Three‐Dimensional and Networked SBA‐15 for Knoevenagel Reaction. ChemistrySelect 2019, 4, 10819–10827. DOI: 10.1002/slct.201902653.
  • Pasha, M. A.; Manjula, K.; Jayashankara, V. P. Sodium Carbonate: A Versatile Catalyst for Knoevenagel Condensation. Indian J. Chem. 2010, 49, 1428–1431. http://nopr.niscair.res.in/handle/123456789/10406.
  • Liu, Q.; Ai, H. M. Sodium Benzoate as a Green, Efficient, and Recyclable Catalyst for Knoevenagel Condensation. Synth. Commun. 2012, 42, 3004–3010. DOI: 10.1080/00397911.2011.574245.
  • Sebti, S.; Smahi, A.; Solhy, A. Natural Phosphate Doped with Potassium Fluoride and Modified with Sodium Nitrate: Efficient Catalysts for the Knoevenagel Condensation. Tetrahedron Lett. 2002, 43, 1813–1815. DOI: 10.1016/S0040-4039(02)00092-8.
  • Sebti, S.; Nazih, R.; Tahir, R.; Saber, A. Fluorapatite/Sodium Nitrate as a Solid Support for the Knoevenagel Reaction. Synth. Commun. 2001, 31, 993–999. DOI: 10.1081/SCC-100103527.
  • Renzetti, A.; Marrone, A.; Gérard, S.; Sapi, J.; Nakazawa, H.; Re, N.; Fontana, A. TiCl4-Promoted Condensation of Methyl Acetoacetate, Isobutyraldehyde, and Indole: A Theoretical and Experimental Study. Phys. Chem. Chem. Phys. 2015, 17, 8964–8972. DOI: 10.1039/c4cp0.5412a
  • Bhanja, P.; Kayal, U.; Bhaumik, A. Ordered Mesoporous γ-Al2O3 as Highly Efficient and Recyclable Catalyst for the Knoevenagel Reaction at Room Temperature. Mol. Catal. 2018, 451, 220–227. DOI: 10.1016/j.mcat.2018.01.019.
  • Ghomi, J. S.; Akbarzadeh, Z. Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4 Nanocatalyst: A Rapid and Green Synthesis of Coumarins under Solvent-Free Conditions. Ultrason. Sonochem. 2018, 40, 78–83. DOI: 10.1016/j.ultsonch.2017.06.022.
  • Trotzki, R.; Hoffmann, M. M.; Ondruschka, B. The Knoevenagel Condensation at Room Temperature. Green Chem. 2008, 10, 873–878. DOI: 10.1039/b808265k.
  • Ferreira, J.; Resende Filho, J. B. M.; Batista, P. K.; Teotonio, E. E. S.; Vale, J. A. Rapid and Efficient Uncatalyzed Knoevenagel Condensations from Binary Mixture of Ethanol and Water. J. Braz. Chem. Soc. 2017, 29, 1382–1387. DOI: 10.21577/0103-5053.20170240.
  • Hai-Yan, W. Theoretical Studies on the Knoevenagel Condensation Reaction of Formaldehyde with Methylene Dicyanide Catalyzed by Alkali Metal Chlorides. Shandong Chem. Ind. 2010, 12, 37–42. DOI: b-b016-sdhg-2010-12.
  • Duong, H. T.; Liberman, S.; Pinard, J.; Coc, A.; Thibault, C.; Touchard, F.; Carré, M.; Lermé, J.; Vialle, J. L.; Juncar, P.; et al. Accurate Determination of Ground State Hyperfine Structures of Some Radioactive Alkali Isotopes by rf Magnetic Resonance and Laser Optical Pumping. J. Phys. 1986, 47, 1903–1908. DOI: 10.1051/jphys:0198600470110190300.
  • Ayers, P. W.; Parr, R. G.; Pearson, R. G. Elucidating the Hard/Soft Acid/Base Principle: A Perspective Based on Half-Reactions. J. Chem. Phys. 2006, 124, 194107. DOI: 10.1063/1.2196882.
  • Jiang, H.; Wang, M.; Song, Z.; Gong, H. Inorganic Zinc Salts Catalyzed Knoevenagel Condensation at Room Temperature without Solvent. Prep. Biochem. Biotechnol. 2009, 39, 194–200. DOI: 10.1080/10826060902800866.
  • Chehab, S.; Merroun, Y.; Ghailane, T.; Habbadi, N.; Boukhris, S.; Hassikou, A.; Ghailane, R.; Akhazzane, M.; Kerbal, A.; Daich, A.; Souizi, A. A New Process for Na2Ca(HPO4)2 Synthesis and Its Application as a Heterogeneous Catalyst in Knoevenagel Condensation. Mediterr. J. Chem. 2018, 7, 56–67. DOI: 10.13171/mjc71/01804111125-souizi.
  • Ferreira, J. M. G. O.; Silva, G. A.; Maísa, C. C.; Lima-Júnior, C. G.; Vale, J. A. Quick Synthesis of Isatin-Derived Knoevenagel Adducts Using Only Eco-Friendly Solvent. Results Chem. 2021, 3, 100–135. DOI: 10.1016/j.rechem.2021.100135.
  • Hajjami, M.; Ghorbani, F.; Roshani, S.; Rahimipanah, S. Novel synthesis of Zirconyl Schiff base complex-functionalized MCM-48 using in oxidation of sulfides and Knoevenagel condensation reaction. J. Porous Mater. 2016, 23, 689–699. DOI: 10.1007/s10934-016-0124-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.