Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 2
206
Views
1
CrossRef citations to date
0
Altmetric
Articles

Greener and scalable mechanosynthesis of bis(3-indolyl)methane as an example of versatile pharmaceutical scaffold: Is the mechanochemical technique a metal-free process?

, & ORCID Icon
Pages 146-159 | Received 10 Oct 2022, Published online: 20 Dec 2022

References

  • Kumari, A.; Singh, R. K. Medicinal Chemistry of Indole Derivatives: Current to Future Therapeutic Prospectives. Bioorg. Chem. 2019, 89, 103021. DOI: 10.1016/j.bioorg.2019.103021.
  • Ritika, S. K. A Brief Review of the Biological Potential of Indole Derivatives. Futur. J. Pharm. Sci. 2020, 6, 121. DOI: 10.1186/s43094-020-00141-y.
  • Singh, T. P.; Singh, O. M. Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini Rev. Med. Chem. 2018, 18, 9–25. DOI: 10.2174/1389557517666170807123201V.
  • Imran, S.; Taha, M.; Ismail, N. A Review of Bisindolylmethane as an Important Scaffold for Drug Discovery. Curr. Med. Chem. 2015, 22, 4412–4433. DOI: 10.2174/0929867322666151006093930.
  • Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. DOI: 10.1021/cr900195a.
  • Nagre, D. T.; Mali, S. N.; Thorat, B. R.; Thorat, S. A.; Chopade, A. R.; Farooqui, M.; Agrawal, B. Synthesis, in-Silico Potential Enzymatic Target Predictions, Pharmacokinetics, Toxicity, anti-Microbial and anti-Inflammatory Studies of Bis-(2-Methylindolyl) Methane Derivatives. CEI. 2021, 17, 127–143. DOI: 10.2174/1573408017666210203203735.
  • Zhang, M. Z.; Chen, Q.; Yang, G. F. A Review on Recent Developments of Indole-Containing Antiviral Agents. Eur. J. Med. Chem. 2015, 89, 421–441. DOI: 10.1016/j.ejmech.2014.10.065.
  • Deb, B.; Debnath, S.; Chakraborty, A.; Majumdar, S. Bis-Indolylation of Aldehydes and Ketones Using Silica-Supported FeCl3: Molecular Docking Studies of Bis-Indoles by Targeting SARS-CoV-2 Main Protease Binding Sites. RSC Adv. 2021, 11, 30827–30839. DOI: 10.1039/D1RA05679D.
  • Chavan, K. A.; Shukla, M.; Chauhan, A. N. S.; Maji, S.; Mali, G.; Bhattacharyya, S.; Erande, R. D. Effective Synthesis and Biological Evaluation of Natural and Designed Bis(Indolyl)Methanes via Taurine-Catalyzed Green Approach. ACS Omega. 2022, 7, 10438–10446. DOI: 10.1021/acsomega.1c07258.
  • Kalla, R. M. N.; Hong, S. C.; Kim, I. Synthesis of Bis(Indolyl)Methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts. ACS Omega. 2018, 3, 2242–2253. DOI: 10.1021/acsomega.7b01925.
  • Khanna, L.; Yadav, S.; Misra, N.; Khanna; P.; Mansi  . “In Water” Synthesis of Bis(Indolyl)Methanes: A Review. Synth. Commun. 2021, 51, 2892–2923. DOI: 10.1080/00397911.2021.1957113.
  • Sadiq, Z.; Ghani, A.; Shujaat, S.; Hussain, E. A.; Alissa, S. A.; Iqbal, M. SiO2-KHSO4 Catalyst Based Rapid Synthesis of Structurally Modified Bis(3-Indolyl)Methanes via N-Substituted Indole. Inorg. Chem. Commun. 2021, 129, 108620. DOI: 10.1016/j.inoche.2021.108620.
  • Yuan, X.; Wu, L.; Xu, C.; Pan, Z.; Shi, L.; Yang, G.; Wang, C.; Fan, S. A Consecutive One-Pot Two-Step Approach to Novel Trifluoromethyl-Substituted Bis(Indolyl)Methane Derivatives Promoted by Sc(OTf)3 and p-TSA. Tetrahedron Lett. 2019, 60, 151329. DOI: 10.1016/j.tetlet.2019.151329.
  • Kotkar, G. D.; Clement, M. J.; Tilve, A. S.; Shirsat, R. N.; Nadkarni, V. S.; Ghadi, S. C.; Tilve, S. G. Synthesis, Activity and in Silico Studies of Novel Bisindolylmethanes from Xylochemical 5-Hydroxymethylfurfural as Antidiabetic Agents. J. Mol. Struct. 2022, 1254, 132370. DOI: 10.1016/j.molstruc.2022.132370.
  • Sato, R.; Tosaka, T.; Masu, H.; Arai, T. Catalytic Asymmetric Synthesis of Chiral Bis(Indolyl)Methanes Using a Ts-PyBidine–Nickel Complex. J. Org. Chem. 2019, 84, 14248–14257. DOI: 10.1021/acs.joc.9b02006.
  • Lee, S. O.; Choi, J.; Kook, S.; Lee, S. Y. Lewis Acid-Catalyzed Double Addition of Indoles to Ketones: Synthesis of Bis(Indolyl)Methanes with All-Carbon Quaternary Centers. Org. Biomol. Chem. 2020, 18, 9060–9064. DOI: 10.1039/d0ob01916j.
  • Taha, M.; Ullah, H.; Al Muqarrabun, L. M. R.; Khan, M. N.; Rahim, F.; Ahmat, N.; Javid, M. T.; Ali, M.; Khan, K. M. Bisindolylmethane Thiosemicarbazides as Potential Inhibitors of Urease: Synthesis and Molecular Modeling Studies. Bioorg. Med. Chem. 2018, 26, 152–160. DOI: 10.1016/j.bmc.2017.11.028.
  • Yaghoubi, A.; Dekamin, M. G.; Arefi, E.; Karimi, B. Propylsulfonic Acid-Anchored Isocyanurate-Based Periodic Mesoporous Organosilica (PMO-ICS-Pr-SO3H): a New and Highly Efficient Recoverable Nanoporous Catalyst for the One-Pot Synthesis of Bis(Indolyl)Methane Derivatives. J. Colloid Interface Sci. 2017, 505, 956–963. DOI: 10.1016/j.jcis.2017.06.055.
  • Baghernejad, B.; Zareie, A. Pseudo-Three Component Reaction of Indole with Benzaldehyde Derivatives for the Preparation of Bis(Indolyl)Methanes in the Presence of nano-CuO-CeO2‏. Green Chem. Asian J. 2021, 5, 343–350. DOI: 10.22034/ajgc.2021.288567.1304.
  • Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Liu, W.; Ma, B.; Bi, S.; Zhan, H.; Chen, X. Synthesis of Bis(Indolyl)Methanes under Dry Grinding Conditions, Promoted by a Lewis Acid–Surfactant–SiO2-Combined Nanocatalyst. Green Chem. 2019, 21, 3542–3546. DOI: 10.1039/C9GC01073D.
  • Nguyen, N. K.; Ha, M. T.; Bui, H. Y.; Trinh, Q. T.; Tran, B. N.; Nguyen, V. T.; Hung, T. Q.; Dang, T. T.; Vu, X. H. Magnetically Recyclable CuFe2O4 Catalyst for Efficient Synthesis of Bis(Indolyl)Methanes Using Indoles and Alcohols under Mild Condition. Catal. Commun. 2021, 149, 106240. DOI: 10.1016/j.catcom.2020.106240.
  • Nugay, N.; Küçükyavuz, Z.; Küçükyavuz, S. Conductive Properties of Poly(4-Vinylpyridine)-Poly(Dimethylsiloxane) Block Copolymers Doped with Tetracyanoquinodimethane. Polymer. 1993, 34, 4649–4654. DOI: 10.1016/0032-3861(93)90697-9.
  • Sahiner, N. A Facile Method for the Preparation of Poly (4-Vinylpyridine) Nanoparticles and Their Characterization. Turk. J. Chem. 2009, 33, 23–31. DOI: 10.3906/kim-0710-5.
  • Zhang, K.; Liang, Y.; Liu, D.; Liu, H. An on–off Biosensor Based on Multistimuli-Responsive Polymer Films with a Binary Architecture and Bioelectrocatalysis. Sens. Actuators B Chem. 2012, 173, 367–376. DOI: 10.1016/j.snb.2012.07.016.
  • Chen, Y.; Zhao, W.; Zhang, J. Preparation of 4-Vinylpyridine (4VP) Resin and Its Adsorption Performance for Heavy Metal Ions. RSC Adv. 2017, 7, 4226–4236. DOI: 10.1039/C6RA26813G.
  • J. D.; Willott, W. M.; Nielen, W. M.; de Vos. Stimuli-Responsive Membranes through Sustainable Aqueous Phase Separation. ACS Appl. Polym. Mater. 2020, 2, 659–667. DOI: 10.1021/acsapm.9b01006.
  • Kennemur, J. G. Poly(Vinylpyridine) Segments in Block Copolymers: Synthesis, Self- Assembly, and Versatility. Macromolecules. 2019, 52, 1354–1370. DOI: 10.1021/acs.macromol.8b01661.
  • Khaligh, N. G.; Mihankhah, T.; Johan, M. R. Efficient Chemical Fixation of CO2 into Cyclic Carbonates Using Poly(4-Vinylpyridine) Supported Iodine as an Eco-Friendly and Reusable Heterogeneous Catalyst. Heteroatom. Chem. 2018, 29, e21440. DOI: 10.1002/hc.21440.
  • Khalig, N. G. Investigation of the Catalytic Activity of Poly(4-Vinylpyridine) Supported Iodine as a New, Efficient and Recoverable Catalyst for Regioselective Ring Opening of Epoxides. RSC Adv. 2012, 2, 3321–3327. DOI: 10.1039/C2RA20080E.
  • Khaligh, N. G.; Mihankhah, T. Poly(4-Vinylpyridinium) Hydrogen Sulfate Catalyzed Synthesis of 12-Aryl-12-Hydro-5H-Benzo[g]Indeno[2,1-b]Quinoline-6,11,13-Trione Derivatives. Res. Chem. Intermed. 2015, 41, 4569–4579. DOI: 10.1007/s11164-014-1552-6.
  • Khaligh, N. G.; Shirini, F. N-Sulfonic Acid Poly(4-Vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst for One-Pot Synthesis of Xanthene Derivatives in Dry Media under Ultrasound Irradiation. Ultrason. Sonochem. 2015, 22, 397–403. DOI: 10.1016/j.ultsonch.2014.06.020.
  • Khaligh, N. G. Three-Component, One-Pot Synthesis of Benzo[f]Indenoquinoline Derivatives Catalyzed by Poly(4-Vinylpyridinium) Hydrogen Sulfate. Chin. J. Catal. 2014, 35, 474–480. DOI: 10.1016/S1872-2067(12)60752-9.
  • Rao, V.; Ashokan, P. V.; Shridhar, M. H. Effect of PTSA on the Electrical Conductivity of I2 Doped Poly-4-Vinyl Pyridine (P4VP). Mat. Sci. Eng. A. 2000, 276, 266–268. DOI: 10.1016/S0921-5093(99)00501-8.
  • Friedrich, H. B.; Singh, N. A Study of Poly(4-Vinylpyridine)-Supported Ruthenate in the Oxidation of Alcohols. Catal Lett. 2006, 110, 61–70. DOI: 10.1007/s10562-006-0099-6.
  • Goe, G.; Marston, C.; Scriven, E.; Showers, E. Application of Pyridine Containing Polymers in Organic Chemistry; Prentice Hall: Englewood Cliffs, NJ, 1990, Chap. 17; pp. 275–285
  • Tan, D.; García, F. Main Group Mechanochemistry: From Curiosity to Established Protocols. Chem. Soc. Rev. 2019, 48, 2274–2292. DOI: 10.1039/C7CS00813A.
  • Margetić, D.; Štrukil, V. Recent Advances in Mechanochemical Organic Synthesis. In Organic Synthesis – A Nascent Relook; Nandeshwarappa, B. P., Eds.; IntechOpen: London, 2020, pp. 1–23.
  • Margetić, D.; Štrukil, V. Mechanochemical Organic Synthesis, 1st ed.; Elsevier Inc.: Amsterdam, Netherlands, 2016.
  • Crawford, D. E.; Miskimmin, C. K. G.; Albadarin, A. B.; Walker, G.; James, S. L. Organic Synthesis by Twin Screw Extrusion (TSE): Continuous, Scalable and Solvent-Free. Green Chem. 2017, 19, 1507–1518. DOI: 10.1039/C6GC03413F.
  • Gorjian, H.; Fahim, H.; Khaligh, N. G. Poly(N-Vinylimidazole): a Biocompatible, Efficient, and Highly Recyclable Heterogeneous Catalyst for the Preparation of Bis(3-Indolyl) Methanes. MCIJ. 2021, 1, 15–25. DOI: 10.22452/mcij.vol1no1.2.
  • Khaligh, N. G.; Mihankhah, T.; Johan, M. R.; Juan, J. C. Two Novel Binuclear Sulfonic-Functionalized Ionic Liquids: Influence of Anion and Carbon-Spacer on Catalytic Efficiency for One-Pot Synthesis of Bis(Indolyl)Methanes. J. Mol. Liq. 2018, 259, 260–273. DOI: 10.1016/j.molliq.2018.03.044.
  • More, A. A.; Szpilman, A. M. Indium (III) Catalyzed Reactions of Vinyl Azides and Indoles. Org. Lett. 2020, 22, 3759–3764. DOI: 10.1021/acs.orglett.0c00919.
  • Chmurzynski, L. The Basicity of Pyridine and Its Tendency towards Cationic Homoconjugation in Non-Aqueous Media. J. Heterocycl. Chem. 2000, 37, 71–74. DOI: 10.1002/jhet.5570370111.
  • Borowiak-Resterna, A.; Szymanowski, J.; Voelkel, A. Structure and Nitrogen Basicity of Pyridine Metal Extractants. J. Radioanal. Nucl. Chem, 1996, 208, 75–86. DOI: 10.1007/bf02039750.
  • (a) Satoh, M.; Yoda, E.; Hayashi, T.; Komiyama, J. Potentiometric Titration of Poly(Vinylpyridines) and Hydrophobic Interaction in the Counterion Binding. Macromolecules. 1989, 22, 1808–1812. DOI: 10.1021/ma00194a051. (b) Ripoll, C.; Muller, G.; Selegny, E. Polyelectrolytes basiques faibles—II. Determination du pKa de la poly(vinyl-2 pyridine) et des coefficients d'activite des petits ions de la solution. Discussion et conclusion. Eur. Polym. J. 1971, 7, 1393–1409. DOI: 10.1016/0014-3057(71)90034-6.
  • Užarević, K.; Ferdelji, N.; Mrla, T.; Julien, P. A.; Halasz, B.; Friščić, T.; Halasz, I. Enthalpy vs. friction: heat Flow Modelling of Unexpected Temperature Profiles in Mechanochemistry of Metal–Organic Frameworks. Chem. Sci. 2018, 9, 2525–2532. DOI: 10.1039/c7sc05312f.
  • Margetić, D.; Štrukil, V. Recent Advances in Mechanochemical Organic Synthesis. In Organic Synthesis: A Nascent Relook; Nandeshwarappa, B. P., Eds.; IntechOpen: London, UK, 2020.
  • Greene, J. P. Microstructures of Polymers. In Automotive Plastics and Composites: Materials and Processing; Andrew, William, Eds.; Elsevier Inc.: Norwich, NY, 2021, pp. 27–37.
  • Sengupta, A.; Adya, V. C. Determination of Common Analytes at Trace Levels in Zr Matrix by ICP-AES without Chemical/Physical Separation. At. Spectrosc. 2013, 34, 207–215. DOI: 10.46770/AS.2013.06.002.
  • Adya, V. C.; Sengupta, A.; Godbole, S. V. Study of the Spectral Interferences of Zirconium on Other Analytes in the Analysis of Nuclear Materials by CCD-Based ICP-AES. At. Spectrosc. 2014, 35, 25–32. DOI: 10.46770/AS.2014.01.004.
  • Komanoya, T.; Nakajima, K.; Kitano, M.; Hara, M. Synergistic Catalysis by Lewis Acid and Base Sites on ZrO2 for Meerwein–Ponndorf–Verley Reduction. J. Phys. Chem. C. 2015, 119, 26540–26546. DOI: 10.1021/acs.jpcc.5b08355.
  • Zhang, Z.-H.; Yin, L.; Wang, Y.-M. An Efficient and Practical Process for the Synthesis of Bis(Indolyl)Methanes Catalyzed by Zirconium Tetrachloride. Synlett. 2005, 2005, 949–1954. DOI: 10.1055/s-2005-869959.
  • Li, J. T.; Dai, H. G.; Xu, W. Z.; Li, T. S. An Efficient and Practical Synthesis of Bis(Indolyl)Methanes Catalyzed by Aminosulfonic Acid under Ultrasound. Ultrason. Sonochem. 2006, 13, 24–27. DOI: 10.1016/j.ultsonch.2004.12.004.
  • Azizian, J.; Teimouri, F.; Mohammadizadeh, M. R. Ammonium Chloride Catalyzed One-Pot Synthesis of Diindolylmethanes under Solvent-Free Conditions. Catal. Commun. 2007, 8, 1117–1121. DOI: 10.1016/j.catcom.2006.06.002.
  • Kamal, A.; Qureshi, A. A. Syntheses of Some Substituted di-Indolylmethanes in Aqueous Medium at Room Temperature. Tetrahedron. 1963, 19, 513–520. DOI: 10.1016/S0040-4020(01)98540-0.
  • Ramesh, C.; Ravindranath, N.; Das, B. Electrophilic Substitution Reactions of Indoles with Carbonyl Compounds Using Ceric Ammonium Nitrate: A Novel and Efficient Method for the Synthesis of di- and Tri-Indolylmethanes. J. Chem. Res. 2003, 2003, 72–74. DOI: 10.3184/030823403103173002.
  • Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. A Versatile and Practical Synthesis of Bis(Indolyl)Methanes/Bis(Indolyl)Glycoconjugates Catalyzed by Trichloro-1,3,5-Triazine. Tetrahedron Lett 2004, 45, 7729–7732. DOI: 10.1016/j.tetlet.2004.08.084.
  • Xia, M.; Wang, S.; Yuan, W. Lewis Acid Catalyzed Electrophilic Substitution of Indole with Aldehydes and Schiff’s Bases under Microwave Solvent‐Free Irradiation. Synth. Commun. 2004, 34, 3175–3182. DOI: 10.1081/SCC-200028611.
  • Babu, G.; Sridhar, N.; Perumal, P. T. A Convenient Method of Synthesis of bis-Indolylmethanes: Indium Trichloride Catalyzed Reactions of Indole with Aldehydes and Schiff’s Bases. Synth. Commun. 2000, 30, 1609–1614. DOI: 10.1080/00397910008087197.
  • Gu, D. G.; Ji, S. J.; Jiang, Z. Q.; Zhou, M. F.; Loh, T. P. An Efficient Synthesis of Bis(Indolyl)Methanes Catalyzed by Recycled Acidic Ionic Liquid. Synlett. 2005, 2005, 0959–0962. DOI: 10.1055/s-2005-865194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.