Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 7-8
153
Views
0
CrossRef citations to date
0
Altmetric
Articles

Scalable synthesis of biologically active novel ethyl 1-(4-alkyl-3-oxo-3,4-dihydro quinoxaline-2-yl)-1H-pyrazole-4-carboxylate derivatives

, , , , , & show all
Pages 547-556 | Received 10 Oct 2022, Published online: 02 Mar 2023

References

  • (a) Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. DOI: 10.3390/molecules24213839. (b) Martins, P.; Jesus, J.; Santos, S.; Raposo, L. R.; Rodrigues, C. R.; Baptista, P. V.; Fernandes, A. R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. DOI: 10.3390/molecules200916852. (c) Arora, P.; Arora, V.; Lamba, H. S.; Wadhwa, D. IJPSR 2012, 3, 2947–2954.
  • Gomtsyan, A. Heterocycles in Drugs and Drug Discovery. Chem. Heterocycl. Comp. 2012, 48, 7–10. DOI: 10.1007/s10593-012-0960-z.
  • Heravi, M. M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311. DOI: 10.1039/d0ra09198g.
  • (a) Kitel, R.; Byczek-Wyrostek, A.; Hopko, K.; Kasprzycka, A.; Walczak, K. Effect of Selected Silyl Groups on the Anticancer Activity of 3,4-Dibromo-5-Hydroxy-Furan-2(5H)-One Derivatives. Pharmaceuticals 2021, 14, 1079. DOI: 10.3390/ph14111079. (b) Neri, J. M.; Cavalcanti, L. N.; Araújo, R. M.; Menezes, F. G. 2,3-Dichloroquinoxaline as a Versatile Building Block for Heteroaromatic Nucleophilic Substitution: A Review of the Last Decade. Arabian J. Chem. 2020, 13, 721–739. DOI: 10.1016/j.arabjc.2017.07.012.
  • (a) Pathania, S.; Narang, R. K.; Rawal, R. K. Role of Sulphur-Heterocycles in Medicinal Chemistry: An Update. Eur. J. Med. Chem. 2019, 180, 486–508. DOI: 10.1016/j.ejmech.2019.07.043. (b) Krátký, M.; Vinsova, J. Sulphur-Containing Heterocycles as Antimycobacterial Agents: Recent Advances in Thiophene and Thiadiazole Derivatives. CTMC 2016, 16, 2921–2952. DOI: 10.2174/1568026616666160506131118.
  • Henen, M. A.; El Bialy, S. A.; Goda, F. E.; Nasr, M. N.; Eisa, H. M. [1,2,4]Triazolo[4,3-a]Quinoxaline: synthesis, Antiviral, and Antimicrobial Activities. Med Chem Res 2012, 21, 2368–2378. DOI: 10.1007/s00044-011-9753-7.
  • (a) Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Mónica Vieira, M. Quinoxaline, Its Derivatives and Applications: A State of the Art Review. Eur. J. Med. Chem. 2015, 97, 664–672. DOI: 10.1016/j.ejmech.2014.06.058. (b) Ajani, O. O.; Nlebemuo, M. T.; Adekoya, J. A.; Ogunniran, K. O.; Siyanbola, T. O.; Ajanaku, C. O. Chemistry and Pharmacological Diversity of Quinoxaline Motifs as Anticancer Agents. Acta Pharm. 2019, 69, 177–196. DOI: 10.2478/acph-2019-0013. (c) Boraei, A. T.; El Tamany, E. S. H.; Ali, I. A.; Gebriel, S. M. Antimicrobial Evaluation of New Quinoxaline Derivatives Synthesized by Selective Coupling with Alkyl Halides and Amino Acids Esters. J. Heterocycl. Chem. 2017, 54, 2881–2888. DOI: 10.1002/jhet.2896.
  • (a) Deleuze-Masquefa, C.; Moarbess, G.; Khier, S.; David, N.; Gayraud-Paniagua, S.; Bressolle, F.; Pinguet, F.; Bonnet, P.-A. New Imidazo[1,2-a]Quinoxaline Derivatives: Synthesis and In Vitro Activity against Human Melanoma. Eur. J. Med. Chem. 2009, 44, 3406–3411. DOI: 10.1016/j.ejmech.2009.02.007. (b) Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud-Paniagua, S.; Vidal, J. R.; Bressolle, F.; Bonnet, P. A. In Vitro and In Vivo Anti-Tumoral Activities of Imidazo[1,2-a]Quinoxaline, Imidazo[1,5-a]Quinoxaline, and Pyrazolo[1,5-a]Quinoxaline Derivatives. Bioorg. Med. Chem. 2008, 16, 6601–6610. DOI: 10.1016/j.bmc.2008.05.022.
  • (a) Liu, X. K.; Ma, L. X.; Wei, Z. Y.; Cui, X.; Zhan, S.; Yin, X. M.; Piao, H. R. Synthesis and Positive Inotropic Activity of [1,2,4]Triazolo[4,3-a] Quinoxaline Derivatives Bearing Substituted Benzylpiperazine and Benzoylpiperazine Moieties. Molecules 2017, 22, 273. DOI: 10.3390/molecules22020273. (b) Lenzi, O.; Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Varani, K.; Marighetti, F.; et al. 4-Amido-2-Aryl-1,2,4-Triazolo[4,3-a]Quinoxalin-1-Ones as New Potent and Selective Human a 3 Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand − Receptor Modeling Studies. J. Med. Chem. 2006, 49, 3916–3925. DOI: 10.1021/jm060373w. (c) El-Adl, K.; El-Helby, A. G. A.; Sakr, H.; Elwan, A. [1,2,4]Triazolo[4,3-a]Quinoxaline and [1,2,4]Triazolo[4,3-a]Quinoxaline-1-Thiol-Derived DNA Intercalators: Design, Synthesis, Molecular Docking, In Silico ADMET Profiles and Anti-Proliferative Evaluations. New J. Chem. 2021, 45, 881–897. DOI: 10.1039/D0NJ02990D. (d) Nasr, M. N. A. Synthesis and Antibacterial Activity of Fused 1,2,4-Triazolo[4,3-a]Quinoxaline and Oxopyrimido[2′,1′:5,1]-1,2,4-Triazolo[4,3-a]Quinoxaline Derivatives. Arch. Pharm. Pharm. Med. Chem. 2002, 335, 389–394. DOI: 10.1002/1521-4184(200211)335:8<389::AID-ARDP389>3.0.CO;2-X. (e) Sumran, G.; Aggarwal, R.; Mittal, A.; Aggarwal, A.; Gupta, A. Design, Synthesis and Photoinduced DNA Cleavage Studies of [1,2,4]-Triazolo[4,3-a]Quinoxalin-4(5H)-Ones. Bioorg. Chem. 2019, 88, 102932. DOI: 10.1016/j.bioorg.2019.102932.
  • Badran, M. M.; Abouzid, K. A.; Hussein, M. H. M. Synthesis of Certain Substituted Quinoxalines as Antimicrobial Agents (Part II). Arch. Pharm. Res. 2003, 26, 107–113. DOI: 10.1007/BF02976653.
  • Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review. Molecules 2020, 25, 2784. DOI: 10.3390/molecules25122784.
  • Husain, A.; Madhesia, D. J. Pharm. Res. 2011, 4, 924–929.
  • Niu, K.; Ding, L.; Zhou, P.; Hao, Y.; Liu, Y.; Song, H.; Wang, Q. Electro-Oxidative C–H Azolation of Quinoxalin-2(1H)-Ones. Green Chem. 2021, 23, 3246–3249. DOI: 10.1039/D1GC00861G.
  • Patil, V. S.; Yadavalli, S. R.; Merugu, R.; Swamy, S. J.; Devunuri, N. Synth. Commun. 2021, 51, 1994–2000.
  • Li, Z.; Yan, N.; Xie, J.; Liu, P.; Zhang, J.; Dai, B. Efficient Copper-Catalyzed Annulation of 2-Formylazoles with 2-Haloanilines for the Synthesis of Pyrrole- and Imidazole-Fused Quinoxalines. Chin. J. Chem. 2015, 33, 589–593. DOI: 10.1002/cjoc.201500115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.