Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 23
214
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exploring the amide coupling of carboxylic acids with amines using green solvent limonene

, , , , &
Pages 1981-1991 | Received 18 Jul 2023, Published online: 22 Sep 2023

References

  • Pattabiraman, V. R.; Bode, J. W. Rethinking Amide Bond Synthesis. Nature. 2011, 480, 471–479. DOI: 10.1038/nature10702.
  • Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63, 12290–12358. DOI: 10.1021/acs.jmedchem.0c00530.
  • Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. J. Med. Chem. 2021, 64, 2339–2381. DOI: 10.1021/acs.jmedchem.0c01786.
  • Massolo, E.; Pirola, M.; Benaglia, M. Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. Eur. J. Org. Chem. 2020, 2020, 4641–4651. DOI: 10.1002/ejoc.202000080.
  • Petchey, T. H. M.; Comerford, J. W.; Farmer, T. J.; Macquarrie, D. J.; Sherwood, J.; Clark, J. H. Optimization of Amidation Reactions Using Predictive Tools for the Replacement of Regulated Solvents with Safer Biobased Alternatives. ACS Sustainable Chem. Eng. 2018, 6, 1550–1554. DOI: 10.1021/acssuschemeng.7b04257.
  • Wang, B.; Cao, D.; Ma, X.; Feng, Y.; Zhang, L.; Zhang, Y.; Liu, C. Synthesis of N-Arylacetamides via Amination of Aryltriazenes with Acetonitrile under Metal-Free and Mild Conditions. Arab. J. Chem. 2021, 14, 103158. DOI: 10.1016/j.arabjc.2021.103158.
  • Bering, L.; Craven, E. J.; Sowerby Thomas, S. A.; Shepherd, S. A.; Micklefield, J. Merging Enzymes with Chemocatalysis for Amide Bond Synthesis. Nat. Commun. 2022, 13, 380. DOI: 10.1038/s41467-022-28005-4.
  • Procopio, D.; Siciliano, C.; Trombino, S.; Dumitrescu, D. E.; Suciu, F.; Di Gioia, M. L. Green Solvents for the Formation of Amide Linkages. Org. Biomol. Chem. 2022, 20, 1137–1149. DOI: 10.1039/d1ob01814k.
  • Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. DOI: 10.1021/op500305s.
  • Allen, C. L.; Williams, J. M. Metal-Catalysed Approaches to Amide Bond Formation. Chem. Soc. Rev. 2011, 40, 3405–3415. DOI: 10.1039/c0cs00196a.
  • Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. A Green Chemistry Perspective on Catalytic Amide Bond Formation. Nat. Catal. 2019, 2, 10–17. DOI: 10.1038/s41929-018-0211-5.
  • Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Electrochemical N-Acylation Synthesis of Amides under Aqueous Conditions. Green Chem. 2019, 21, 4329–4333. DOI: 10.1039/C9GC01391A.
  • Lu, B.; Xiao, W. J.; Chen, J. R. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022, 27, 27. DOI: 10.3390/molecules27020517.
  • Leggio, A.; Bagala, J.; Belsito, E. L.; Comande, A.; Greco, M.; Liguori, A. Formation of Amides: one-Pot Condensation of Carboxylic Acids and Amines Mediated by TiCl(4). Chem. Cent. J. 2017, 11, 87. DOI: 10.1186/s13065-017-0318-9.
  • Li, P.; Xu, J.-C. New and Highly Efficient Immonium Type Peptide Coupling Reagents: Synthesis, Mechanism and Application. Tetrahedron. 2000, 56, 4437–4445. DOI: 10.1016/S0040-4020(00)00365-3.
  • Mahé, O.; Desroches, J.; Paquin, J.-F. Amide Formation Using in Situ Activation of Carboxylic Acids with [Et2NSF2]BF4. Eur. J. Org. Chem. 2013, 2013, 4325–4331. DOI: 10.1002/ejoc.201300289.
  • Matsugi, M.; Hasegawa, M.; Sadachika, D.; Okamoto, S.; Tomioka, M.; Ikeya, Y.; Masuyama, A.; Mori, Y. Preparation and Condensation Reactions of a New Light-Fluorous Mukaiyama Reagent: reliable Purification with Fluorous Solid Phase Extraction for Esters and Amides. Tetrahedron Lett. 2007, 48, 4147–4150. DOI: 10.1016/j.tetlet.2007.03.173.
  • Matsugi, M.; Suganuma, M.; Yoshida, S.; Hasebe, S.; Kunda, Y.; Hagihara, K.; Oka, S. An Alternative and Facile Purification Procedure of Amidation and Esterification Reactions Using a Medium Fluorous Mukaiyama Reagent. Tetrahedron Lett. 2008, 49, 6573–6574. DOI: 10.1016/j.tetlet.2008.09.016.
  • Wang, S. M.; Zhao, C.; Zhang, X.; Qin, H. L. Clickable Coupling of Carboxylic Acids and Amines at Room Temperature Mediated by so(2)F(2): a Significant Breakthrough for the Construction of Amides and Peptide Linkages. Org. Biomol. Chem. 2019, 17, 4087–4101. DOI: 10.1039/c9ob00699k.
  • Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehada, S.; Dunn, P. J. CHEM21 Selection Guide of Classical- and Less Classical-Solvents. Green Chem. 2016, 18, 288–296. DOI: 10.1039/C5GC01008J.
  • Sheldon, R. A. The Greening of Solvents: Towards Sustainable Organic Synthesis. Curr. Opin. Green. Sustain. 2019, 18, 13–19. DOI: 10.1016/j.cogsc.2018.11.006.
  • Clarke, C. J.; Tu, W. C.; Levers, O.; Brohl, A.; Hallett, J. P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. DOI: 10.1021/acs.chemrev.7b00571.
  • Siddiqui, S. A.; Pahmeyer, M. J.; Assadpour, E.; Jafari, S. M. Extraction and Purification of d-Limonene from Orange Peel Wastes: Recent Advances. Ind. Crop. Prod. 2022, 177, 114484-114491. DOI: 10.1016/j.indcrop.2021.114484.
  • Bousfield, T. W.; Pearce, K. P. R.; Nyamini, S. B.; Angelis-Dimakis, A.; Camp, J. E. Synthesis of Amides from Acid Chlorides and Amines in the Bio-Based Solvent Cyrene™. Green Chem. 2019, 21, 3675–3681. DOI: 10.1039/C9GC01180C.
  • Kim, Y. W.; Kim, M. J.; Chung, B. Y.; Bang Du, Y.; Lim, S. K.; Choi, S. M.; Lim, D. S.; Cho, M. C.; Yoon, K.; Kim, H. S.; et al. Safety Evaluation and Risk Assessment of d-Limonene. J. Toxicol. Environ. Health. B Crit. Rev. 2013, 16, 17–38. DOI: 10.1080/10937404.2013.769418.
  • Aissou, M.; Chemat-Djenni, Z.; Yara-Varón, E.; Fabiano-Tixier, A.-S.; Chemat, F. Limonene as an Agro-Chemical Building Block for the Synthesis and Extraction of Bioactive Compounds. CR Chim. 2017, 20, 346–358. DOI: 10.1016/j.crci.2016.05.018.
  • Ciriminna, R.; Lomeli-Rodriguez, M.; Demma Cara, P.; Lopez-Sanchez, J. A.; Pagliaro, M. Limonene: A Versatile Chemical of the Bioeconomy. Chem. Commun. 2014, 50, 15288–15296. DOI: 10.1039/c4cc06147k.
  • Sadi, M.; Zeboudj, S.; Azri, Y. M.; Tou, I. D-Limonene as a Green Solvent to Regenerate Granular-Activated Carbon Saturated with Phenol. Sep. Sci. Tehnol. 2020, 55, 1776–1785. DOI: 10.1080/01496395.2019.1609513.
  • Clark, J. H.; Macquarrie, D. J.; Sherwood, J. A Quantitative Comparison between Conventional and Bio-Derived Solvents from Citrus Waste in Esterification and Amidation Kinetic Studies. Green Chem. 2012, 14, 90–93. DOI: 10.1039/C1GC16299C.
  • Zhang, C. T.; Zhu, R.; Wang, Z.; Ma, B.; Zajac, A.; Smiglak, M.; Xia, C. N.; Castle, S. L.; Wang, W. L. Continuous Flow Synthesis of Diaryl Ketones by Coupling of Aryl Grignard Reagents with Acyl Chlorides under Mild Conditions in the Ecofriendly Solvent 2-Methyltetrahydrofuran. RSC Adv. 2019, 9, 2199–2204. DOI: 10.1039/c8ra07447j.
  • Mu, X. Y.; Wang, Z. J.; Feng, B.; Xu, L.; Gao, L. X.; Satheeshkumar, R.; Li, J.; Zhou, Y. B.; Wang, W. L. Synthesis of 2-Ethoxycarbonylthieno[2,3-b]Quinolines in Biomass-Derived Solvent Gamma-Valerolactone and Their Biological Evaluation against Protein Tyrosine Phosphatase 1B. RSC Adv. 2021, 11, 3216–3220. DOI: 10.1039/d0ra09247a.
  • Wang, X.; Zhang, C.; Jiang, Y.; Wang, W.; Zhou, Y.; Chen, Y.; Zhang, B.; Tan, R. X.; Ge, H. M.; Yang, Z. J.; et al. Influence of Water and Enzyme on the Post-Transition State Bifurcation of NgnD-Catalyzed Ambimodal [6 + 4]/[4 + 2] Cycloaddition. J. Am. Chem. Soc. 2021, 143, 21003–21009. DOI: 10.1021/jacs.1c10760.
  • Chen, Y.; Zhao, R.; Tang, C.; Zhang, C.; Xu, W.; Wu, L.; Wang, Y.; Ye, D.; Liang, Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria-Targeted Hydrogen Sulfide (H(2) S) Delivery System. Angew. Chem. Int. Ed. Engl. 2022, 61, e202112734. DOI: 10.1002/anie.202112734.
  • Zhang, C.; Sun, Y. T.; Gao, L. X.; Feng, B.; Yan, X.; Guo, X. H.; Ren, A. M.; Zhou, Y. B.; Li, J.; Wang, W. L. Theoretical Study and Application of 2-Phenyl-1,3,4-Thiadiazole Derivatives with Optical and Inhibitory Activity against SHP1. Phys. Chem. Chem. Phys. 2022, 24, 861–874. DOI: 10.1039/d1cp04268h.
  • Xu, L.; Mu, X.; Liu, M.; Wang, Z.; Shen, C.; Mu, Q.; Feng, B.; Xu, Y.; Hou, T.; Gao, L.; et al. Novel Thieno[2,3-b]Quinoline-Procaine Hybrid Molecules: A New Class of Allosteric SHP-1 Activators Evolved from PTP1B Inhibitors. Chin. Chem. Lett. 2023, 34, 108063–108068. DOI: 10.1016/j.cclet.2022.108063.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Wallingford, CT, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.