Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 23
110
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reusable SiO2@NiO core-shell nanoparticles catalyzed efficient synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8, 13-dione derivatives

, &
Pages 2002-2017 | Received 22 May 2023, Published online: 27 Sep 2023

References

  • Knight, C. G.; Stephens, T. Xanthene-Dye-Labelled Phosphatidylethanolamines as Probes of Interfacial pH. Studies in Phospholipid Vesicles. Biochem. J. 1989, 258, 683–687. DOI: 10.1042/bj2580683.
  • Ahmad, M.; King, T. A.; Ko, D. K.; Cha, B. H.; Lee, J. Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases. J. Phys. D: Appl. Phys. 2002, 35, 1473–1476. DOI: 10.1088/0022-3727/35/13/303.
  • Ion, R. M.; Planner, A.; Wiktorowicz, K.; Frackowiak, D. Frackowiak, the Incorporation of Various Porphyrins into Blood Cells Measured via Flow Cytometry, Absorption and Emission Spectroscopy. Acta Biochim. Pol. 1998, 45, 833–845. DOI: 10.18388/abp.1998_4279.
  • Bhowmik, B. B.; Ganguly, P. Spectrochim. Photophysics of Xanthene Dyes in Surfactant Solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 1997–2003. DOI: 10.1016/j.saa.2004.07.031.
  • Lambert, R. W.; Martin, J. A.; Merret, J. H.; Parkes, K. E. B.; Thomas, G. J. PCT Int. ApplWO9706178. Chem. Abstr. 1997, 126, P212377y.
  • Hideo, T.; Tokkyo Koho, J. P. 56005480, Benxopyrano[2, 3-b]Xanthenes Derivatives. Chem. Abstr. 1981, 95, 80922b.
  • Poupelin, J.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R Synthesis and Anti-Inflammatory Properties of Bis(2-Hydroxy, 1- Naphthyl) Methane Derivatives. Eur. J. Med. Chem. 1978, 13, 67–71.
  • Kumar, A.; Sharma, S.; Maurya, R. A.; Sarkar, J. Diversity Oriented Synthesis of Benzoxathene and Benzochromene Libraries via One-Pot, Three Component Reactions and Their Anti-Proliferative Activity. J. Comb. Chem. 2010, 12, 20–24. DOI: 10.1021/cc900143h.
  • Khaligh, N. G. Poly(4-Vinylpyridinium) Hydrogen Sulfate: An Efficient Catalyst for the Synthesis of Xanthene Derivatives under Solvent-Free Conditions. Catal. Sci. Technol. 2012, 2, 2211–2215. DOI: 10.1039/C2CY20276J.
  • Wu, L. Q.; Wu, Y. F.; Yang, C. G.; Yang, L. M.; Yang, L. J. Silica Supported Perchloric Acid: An Efficient Catalyst for the Synthesis of 14-Aryl-14H-Dibenzo[a,i]Xanthene-8,13-Diones. J. Braz. Chem. Soc. 2010, 21, 941–945. DOI: 10.1590/S0103-50532010000500025.
  • Wu, L.; Zhang, J.; Fang, L.; Yang, C.; Yan, F. Silica Chloride Catalyzed Synthesis of 14-Aryl-14H-Dibenzo[a,i]Xanthene-8,13-Diones. Dyes Pigm. 2010, 86, 93–96. DOI: 10.1016/j.dyepig.2009.12.008.
  • Suresh, K. B.; Crooks, P. A.; Rajitha, B. Xanthan Sulfuric Acid: An Efficient Biodegradable Solid Acid Catalyst for the Synthesis of 14-Aryl-14H-Dibenzo [a, i] Xanthene-8, 13-Diones. Adv. Appl. Sci. Res. 2012, 3, 1–5.
  • Srinivas, V.; Rajeswar, R. V. Facile, One-Pot, Three-Component Synthesis of Benzo[a]Naphthacene-8,13-Diones. Synth. Commun. 2012, 42, 388–393. DOI: 10.1080/00397911.2010.524961.
  • Chao, S.; Lu, G.; Wu, L. Amberlyst-15 Catalyzed Synthesis of 12-Aryl-12H-Benzo[i][1,3]-Dioxolo[4,5-b]Xanthene-6,11-Diones and 14-Aryl-14H-Dibenzo[1,i]Xanthene-8,13-Diones under Solvent-Free Condition. Asian J. Chem. 2011, 23, 3865–3869.
  • Liu, D.; Xu, D.; Gao, J.; Zhou, S. p-Toluene Sulfonic Acid Catalyzed Synthesis of 14-Aryl-14H-Dibenzo[a,i]Xanthene-8,13-Diones. Chem. Sci. Trans. 2014, 3, 455–459. DOI: 10.7598/cst2014.597.
  • Khurana, J. M.; Chaudhary, A.; Lumb, A.; Nand, B. Efficient One-Pot Syntheses of Dibenzo[a,i]Xanthenediones and Evaluation of Their Antioxidant Activity. Can. J. Chem. 2012, 90, 739–746. DOI: 10.1139/v2012-033.
  • Kumar, V.; Sharma, U.; Verma, P. K.; Kumar, N.; Singh, B. Silica-Supported Boric Acid with Ionic Liquid: A Novel Recyclable Catalytic System for One-Pot Three-Component Mannich Reaction. Chem. Pharm. Bull. (Tokyo) 2011, 59, 639–645. DOI: 10.1248/cpb.59.639.
  • Kumar, V.; Singh, C.; Sharma, U.; Verma, U.; Singh, B.; Kumar, N. Silica Supported Boric Acid Catalyzed Synthesis of Dihydropyrimidin-2-Ones, Bis(Indolyl)Methanes, Esters and Amides. Indian J. Chem. 2014, 53B, 83–89.
  • Baghban, A.; Doustkhah, E.; Rostamnia, S. Catalytic Behavior of Perchloric Acid on Silica Mesoporous SBA-15 as a Green Heterogeneous Bronsted Acid in Heterocyclic Multicomponent Reaction. Int. Nano Lett. 2018, 8, 41–47. DOI: 10.1007/s40089-018-0231-9.
  • Saqib, F.; Pradip, K. M.; Qin, Z.; Thiwanka, B. S.; Robert, L. S.; Paul, R. H. Application of Silica-Supported Alkylating Reagents in a One-Pot, Sequential Protocol to Diverse Benzoxathiazepine 1,1-Dioxides. ACS. Comb. Sci. 2016, 18, 387–393. DOI: 10.1021/acscombsci.6b00041.
  • Atif, M.; Zeba, N. S. Silica-Based Ionic Liquid Supported on Xanthan [ImSi][PF6]@Xanthan in the Synthesis of Acridine Derivatives by Multicomponent Reaction. Sustain. Chem. Pharm. 2022, 29, 100775. DOI: 10.1016/j.scp.2022.100775.
  • Ziarani, G. M.; Lashgari, N.; Badiei, A. Sulfonic Acid-Functionalized Mesoporous Silica (SBA-Pr-SO3H) as Solid Acid Catalyst in Organic Reactions. J. Mol. Catal. A: Chem. 2015, 397, 166–191. DOI: 10.1016/j.molcata.2014.10.009.
  • Gawande, M. B.; Hosseinpour, R.; Luque, R. Silica Sulfuric Acid and Related Solid-Supported Catalysts as Versatile Materials for Greener Organic Synthesis. COS. 2014, 11, 526–544. DOI: 10.2174/15701794113106660080.
  • Ghasemzadeh, M. A.; Azimi-Nasrabad, M. Safaei-Ghomi, Fe3O4@SiO2 Nanoparticles: An Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 14-Aryl-14H-Dibenzo[a,i]Xanthene-8,13-Dione Derivatives. J. Iran. J. Catal. 2016, 6, 203–211.
  • Tyagi, M.; Tomar, M.; Gupta, V. NiO Nanoparticle-Based Urea Biosensor. Biosens. Bioelectron. 2013, 41, 110–115. DOI: 10.1016/j.bios.2012.07.062.
  • Bai, G.; Dai, H.; Deng, J.; Liu, Y.; Ji, K. Porous NiO Nanoflowers and Nanourchins: Highly Active Catalysts for Toluene Combustion. Catal. Commun. 2012, 27, 148–153. DOI: 10.1016/j.catcom.2012.07.008.
  • Proenca, M. P.; Sousa, C. T.; Pereira, A. M.; Tavares, P. B.; Ventura, J.; Vazquez, M.; Araujo, J. P. Size and Surface Effects on the Magnetic Properties of NiO Nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 9561–9567. DOI: 10.1039/C1CP00036E.
  • Wu, X.; Xing, G.; Tan, S. L. J.; Webster, R. D.; Sum, T. C.; Yeow, E. K. L. Hole Transfer Dynamics from Dye Molecules to p-Type NiO Nanoparticles: Effects of Processing Conditions. Phys. Chem. Chem. Phys. 2012, 14, 9511–9519. DOI: 10.1039/C2CP40926G.
  • Yuan, C.; Hou, L.; Feng, Y.; Xiong, S.; Zhang, X. Sacrificial Template Synthesis of Short Mesoporous NiO Nanotubes and Their Application in Electrochemical Capacitors. Electrochim. Acta 2013, 88, 507–512. DOI: 10.1016/j.electacta.2012.10.115.
  • Vaidya, S.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. Synthesis of Homogeneous NiO@SiO2 Core-Shell Nanostructures and the Effect of Shell Thickness on the Magnetic Properties. Cryst. Growth Des. 2009, 9, 1666–1670. DOI: 10.1021/cg800881p.
  • Zhang, A.; Zhang, R.; Zhang, N.; Hong, S.; Zhang, M. Synthesis of New NiO-SiO2-Sol Pillared Montmorillonite and Its Catalytic Activity in the Hydrogenation of Benzene. Kinet. Catal. 2010, 51, 710–713. DOI: 10.1134/S0023158410050125.
  • Gao, X.; Mao, H.; Lu, M.; Yang, J.; Li, B. Facile Synthesis Route to NiO-SiO2 Intercalated Clay with Ordered Porous Structure: Intragallery Interfacially Controlled Functionalization Using Nickel-Ammonia Complex for Deep Desulfurization. Microporous Mesoporous Mater. 2012, 148, 25–33. DOI: 10.1016/j.micromeso.2011.07.022.
  • Buso, D.; Guglielmi, M.; Martucci, A.; Cantalini, C.; Post, M. L.; Hache, A. Porous Sol Gel Silica Films Doped with Crystalline NiO Nanoparticles for Gas Sensing Applications. J. Sol-Gel Sci. Technol. 2006, 40, 299–308. DOI: 10.1007/s10971-006-8958-6.
  • Zhao, H.; Yin, F. J.; Xu, X. Y.; Tong, Z.; Zheng, J. W.; Zhao, G. A Novel Catalyst SiO2@NiO for Reduction of 4-NP. Synth. React. Inorg. Nanomet. Chem. 2007, 37, 15–18. DOI: 10.1080/15533170601172369.
  • Casu, M.; Lai, A.; Musinu, A.; Piccaluga, G.; Solinas, S.; Bruni, S.; Cariati, F.; Beretta, E. XRD, TEM, IR and 29Si MAS NMR Characterization of NiO-SiO2 Nanocomposite. J. Mater. Sci. 2001, 36, 3731–3735. DOI: 10.1023/A:1017973716834.
  • Bayal, N.; Jeevanandam, P. Synthesis of SiO2@NiO Magnetic Core-Shell Nanoparticles and Their Use as Adsorbents for the Removal of Methylene Blue. J. Nanopart. Res. 2013, 15, 2066–2080. DOI: 10.1007/s11051-013-2066-7.
  • Kotal, A.; Paira, T. K.; Banerjee, S.; Mandal, T. K. Ultrasound-Induced in Situ Formation of Coordination Organogels from Isobutyric Acids and Zinc Oxide Nanoparticles. Langmuir 2010, 26, 6576–6582. DOI: 10.1021/la903923q.
  • Lempers, H. E. B.; Sheldon, R. A. The Stability of Chromium in CrAPO-5, CrAPO-11 and CrS-1 during Liquid Phase Oxidations. J. Catal. 1998, 175, 62–69. DOI: 10.1006/jcat.1998.1979.
  • Muthuvinothini, A.; Stella, S. Green Synthesis of Metal Oxide Nanoparticles and Their Catalytic Activity for the Reduction of Aldehydes. Process Biochem. 2019, 77, 48–56. DOI: 10.1016/j.procbio.2018.12.001.
  • Chakrabarty, S.; Chatterjee, K. Synthesis and Optical Manifestation of NiO-Silica Nanocomposite. ISRN Nanotechnol. 2011, 2011, 1–6. DOI: 10.5402/2011/719027.
  • Clarina, T.; Priya Dharsini, G. R.; Rama, V. Synthesis, Characterization and In Vitro Antibacterial Effect of 4H-Benzo[g]Chromene Derivatives Using Nano-NiO. Chem. Sci. Trans. 2017, 6, 523–534. DOI: 10.7598/cst2017.1422.
  • Pfaller, M. A.; Burmeister, L.; Bartlett, M. S.; Rinaldi, M. G. Multicenter Evaluation of Four Methods of Yeast Inoculum Preparation. J. Clin. Microbiol. 1988, 26, 1437–1441. DOI: 10.1128/jcm.26.8.1437-1441.1988.
  • Priya Dharsini, G. R.; Clarina, T.; Rama, V. Synthesis, Characterization, Chemical Nuclease Activity and Antimicrobial Evaluation of Tridendate (NOS Donor) Schiff Base Ligand: 2-(4-(Thiophen-2-yl)but-3-en-2-Ylideneamino)Phenol and Their Metal-Organic Hybrids. Chem. Sci. Trans. 2017, 6, 637–645. DOI: 10.7598/cst2017.1423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.