Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 23
192
Views
1
CrossRef citations to date
0
Altmetric
Articles

An efficient one-pot multicomponent, Amberlite IR120(H) catalyzed microwave-assisted synthesis of 1,2,4,5-tetrasubstituted-1H-imidazoles: Plausible mechanism and antibacterial evaluation

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 2029-2040 | Received 22 Jun 2023, Published online: 12 Oct 2023

References

  • Zheng, X.; Ma, Z.; Zhang, D. Synthesis of Imidazole-Based Medicinal Molecules Utilizing the Van Leusen Imidazole Synthesis. Pharmaceuticals 2020, 13, 37. DOI: 10.3390/ph13030037.
  • Siwach, A.; Verma, P. K. Synthesis and Therapeutic Potential of Imidazole Containing Compounds. BMC Chem. 2021, 15, 12. DOI: 10.1186/s13065-020-00730-1.
  • Moosavi-Zare, A. R.; Asgari, Z.; Zare, A.; Zolfigol, M. A.; Shekouhy, M. One Pot Synthesis of 1,2,4,5-Tetrasubstituted-Imidazoles Catalyzed by Trityl Chloride in Neutral Media. RSC Adv. 2014, 4, 60636–60639. DOI: 10.1039/C4RA10589C.
  • Marques, M. V.; Ruthner, M. M.; Fontoura, L. A. M.; Russowsky, D. Metal Chloride Hydrates as Lewis Acid Catalysts in Multicomponent Synthesis of 2,4,5-Triarylimidazoles or 2,4,5-Triaryloxazoles. J. Braz. Chem. Soc. 2012, 23, 171–179. DOI: 10.1590/S0103-50532012000100024.
  • Puratchikody, A.; Doble, M. Antinociceptive and Antiinflammatory Activities and QSAR Studies on 2-Substituted-4,5-Diphenyl-1H-Imidazoles. Bioorg. Med. Chem. 2007, 15, 1083–1090. DOI: 10.1016/j.bmc.2006.10.025.
  • Üstün, E.; Özgür, A.; Coşkun, K. A.; Demir, S.; Özdemir, İ.; Tutar, Y. CO-Releasing Properties and Anticancer Activities of Manganese Complexes with Imidazole/Benzimidazole Ligands. J. Coord. Chem. 2016, 69, 3384–3394. DOI: 10.1080/00958972.2016.1231921.
  • Ali, I.; Lone, M. N.; Aboul-Enein, H. Y. Imidazoles as Potential Anticancer Agents. Medchemcomm 2017, 8, 1742–1773. DOI: 10.1039/c7md00067g.
  • Narasimhan, B.; Sharma, D.; Kumar, P.; Yogeeswari, P.; Sriram, D. Synthesis, Antimicrobial and Antimycobacterial Evaluation of [2-(Substituted Phenyl)-Imidazol-1-yl]-Pyridin-3-yl-Methanones. J Enzyme Inhib. Med. Chem. 2011, 26, 720–727. DOI: 10.3109/14756366.2010.548331.
  • Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, Antimicrobial and Antiviral Evaluation of Substituted Imidazole Derivatives. Eur. J. Med. Chem. 2009, 44, 2347–2353. DOI: 10.1016/j.ejmech.2008.08.010.
  • Rani, N.; Sharma, A.; Singh, R. Imidazoles as Promising Scaffolds for Antibacterial Activity: A Review. Mini Rev. Med. Chem. 2013, 13, 1812–1835. DOI: 10.2174/13895575113136660091.
  • Verma, A.; Joshi, S.; Singh, D. ChemInform Abstract: Imidazole: Having Versatile Biological Activities. ChemInform 2014, 45, no–no. DOI: 10.1002/chin.201444281.
  • Li, J.; Kaoud, T. S.; Laroche, C.; Dalby, K. N.; Kerwin, S. M. Synthesis and Biological Evaluation of p38α Kinase-Targeting Dialkynylimidazoles. Bioorg. Med. Chem. Lett. 2009, 19, 6293–6297. DOI: 10.1016/j.bmcl.2009.09.094.
  • Laufer, S.; Hauser, D.; Stegmiller, T.; Bracht, C.; Ruff, K.; Schattel, V.; Albrecht, W.; Koch, P. Tri- and Tetrasubstituted Imidazoles as p38α Mitogen-Activated Protein Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 6671–6675. DOI: 10.1016/j.bmcl.2010.09.012.
  • Doman, T. N.; McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.; Kurumbail, R.; Stallings, W. C.; Connolly, D. T.; Shoichet, B. K. Molecular Docking and High-Throughput Screening for Novel Inhibitors of Protein Tyrosine Phosphatase-1B. J. Med. Chem. 2002, 45, 2213–2221. DOI: 10.1021/jm010548w.
  • Weinstein, D. S.; Liu, W.; Ngu, K.; Langevine, C.; Combs, D. W.; Zhuang, S.; Chen, C.; Madsen, C. S.; Harper, T. W.; Robl, J. A.; et al. Discovery of Selective Imidazole-Based Inhibitors of Mammalian 15-Lipoxygenase: Highly Potent against Human Enzyme within a Cellular Environment. Bioorg. Med. Chem. Lett. 2007, 17, 5115–5120. DOI: 10.1016/j.bmcl.2007.07.011.
  • Zhang, C.; Sarshar, S.; Moran, E. J.; Krane, S.; Rodarte, J. C.; Benbatoul, K. D.; Dixon, R.; Mjalli, A. M. 2,4,5-Trisubstituted Imidazoles: Novel Nontoxic Modulators of P-Glycoprotein Mediated Multidrug Resistance. Part 2. Bioorg. Med. Chem. Lett. 2000, 10, 2603–2605. DOI: 10.1016/S0960-894X(00)00521-7.
  • de Laszlo, S. E.; Hacker, C.; Li, B.; Kim, D.; MacCoss, M.; Mantlo, N.; Pivnichny, J. V.; Colwell, L.; Koch, G. E.; Cascieri, M. A.; et al. Potent, Orally Absorbed Glucagon Receptor Antagonists. Bioorg. Med. Chem. Lett. 1999, 9, 641–646. DOI: 10.1016/S0960-894X(99)00081-5.
  • Pierce, M. E.; Carini, D. J.; Huhn, G. F.; Wells, G. J.; Arnett, J. F. Practical Synthesis and Regioselective Alkylation of Methyl 4(5)-(Pentafluoroethyl)-2-Propylimidazole-5(4)-Carboxylate to Give DuP 532, a Potent Angiotensin II Antagonist. J. Org. Chem. 1993, 58, 4642–4645. DOI: 10.1021/jo00069a029.
  • Teimouri, A.; Chermahini, A. N. An Efficient and One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed via Solid Acid Nano-Catalyst. J. Mol. Catal. A Chem. 2011, 346, 39–45. DOI: 10.1016/j.molcata.2011.06.007.
  • Mirjalili, B. F.; Bamoniri, A. H.; Zamani, L. One-Pot Synthesis of 1, 2, 4, 5-Tetrasubstituted Imidazoles Promoted by nano-TiCl4.SiO2. Sci. Iran. 2012, 19, 565–568. DOI: 10.1016/j.scient.2011.12.013.
  • Safari, J.; Gandomi-Ravandi, S.; Akbari, Z. Sonochemical Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Using Nanocrystalline MgAl2O4 as an Effective Catalyst. J. Adv. Res. 2013, 4, 509–514. DOI: 10.1016/j.jare.2012.09.001.
  • Safa, K. D.; Allahvirdinesbat, M.; Namazi, H. Synthesis of Novel Organosiliconsulfur-Containing Tetrasubstituted Imidazoles Sonocatalyzed by LaxSr1-xFeyCo1-yO3 Nanoperovskites. Synth. Commun. 2015, 45, 1205–1214. DOI: 10.1080/00397911.2015.1009552.
  • Arghan, M.; Koukabi, N.; Kolvari, E. Sulfonated-Polyvinyl Amine Coated on Fe3O4 Nanoparticles: A High-Loaded and Magnetically Separable Acid Catalyst for Multicomponent Reactions. J. Iran. Chem. Soc. 2019, 16, 2333–2350. DOI: 10.1007/s13738-019-01700-8.
  • Borhade, A. V.; Tope, D. R.; Gite, S. G. Synthesis, Characterization and Catalytic Application of Silica Supported Tin Oxide Nanoparticles for Synthesis of 2,4,5-Tri and 1,2,4,5-Tetrasubstituted Imidazoles under Solvent-Free Conditions. Arab. J. Chem. 2017, 10, S559–S567. DOI: 10.1016/j.arabjc.2012.11.001.
  • Safari, J.; Naseh, S.; Zarnegar, Z.; Akbari, Z. Applications of Microwave Technology to Rapid Synthesis of Substituted Imidazoles on Silica-Supported SbCl3 as an Efficient Heterogeneous Catalyst. J. Taibah Univ. Sci. 2014, 8, 323–330. DOI: 10.1016/j.jtusci.2014.01.007.
  • Nejatianfar, M.; Akhlaghinia, B.; Jahanshahi, R. Cu(II) Immobilized on Guanidinated Epibromohydrin-Functionalized γ-Fe2O3@TiO2 (γ-Fe2O3@TiO2-EG-Cu(II)): a Highly Efficient Magnetically Separable Heterogeneous Nanocatalyst for One-Pot Synthesis of Highly Substituted Imidazoles. Appl. Organomet. Chem. 2018, 32, 1–12. DOI: 10.1002/aoc.4095.
  • Singh, H.; Rajput, J. K. Co(II) Anchored Glutaraldehyde Crosslinked Magnetic Chitosan Nanoparticles (MCS) for Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles. Appl. Organomet. Chem. 2018, 32, 1–20. DOI: 10.1002/aoc.3989.
  • Thwin, M.; Mahmoudi, B.; Ivaschuk, O. A.; Yousif, Q. A. An Efficient and Recyclable Nanocatalyst for the Green and Rapid Synthesis of Biologically Active Polysubstituted Pyrroles and 1,2,4,5-Tetrasubstituted Imidazole Derivatives. RSC Adv. 2019, 9, 15966–15975. DOI: 10.1039/c9ra02325a.
  • Zarnegar, Z.; Safari, J. Catalytic Activity of Cu Nanoparticles Supported on Fe3O 4-Polyethylene Glycol Nanocomposites for the Synthesis of Substituted Imidazoles. New J. Chem. 2014, 38, 4555–4565. DOI: 10.1039/C4NJ00645C.
  • Ahmed Arafa, W. A. An Eco-Compatible Pathway to the Synthesis of Mono and Bis-Multisubstituted Imidazoles over Novel Reusable Ionic Liquids: An Efficient and Green Sonochemical Process. RSC Adv. 2018, 8, 16392–16399. DOI: 10.1039/c8ra02755b.
  • Jyoti Das, P.; Das, J.; Ghosh, M.; Sultana, S. Solvent Free One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by Secondary Amine Based Ionic Liquid and Defective Keggin Heteropoly Acid. GSC 2013, 03, 6–13. DOI: 10.4236/gsc.2013.34A002.
  • Akbari, A. Tri(1-Butyl-3-Methylimidazolium) Gadolinium Hexachloride, ([Bmim]3[GdCl6]), a Magnetic Ionic Liquid as a Green Salt and Reusable Catalyst for the Synthesis of Tetrasubstituted Imidazoles. Tetrahedron Lett. 2016, 57, 431–434. DOI: 10.1016/j.tetlet.2015.12.053.
  • Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini, N.; Safavi-Rad, Z. Green, One-Pot, Solvent-Free Synthesis Using a Brønsted Acidic Ionic Liquid as Novel and Reusable Catalyst. Synth. Commun. 2010, 40, 2588–2597. DOI: 10.1080/00397910903289271.
  • Khandebharad, A. U.; Sarda, S. R.; Gill, C.; Agrawal, B. R. An Efficient Synthesis of Substituted Imidazoles Catalyzed by 3-N-Morpholinopropanesulfonic Acid (MOPS) under Ultrasound Irradiation. Org. Prep. Proced. Int. 2020, 52, 524–529. DOI: 10.1080/00304948.2020.1804773.
  • Zhang, F.; Gao, Q.; Chen, B.; Bai, Y.; Sun, W.; Lv, D.; Ge, M. A Practical and Green Approach towards Synthesis of Multisubstituted Imidazoles Using Boric Acid as Efficient Catalyst. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 786–789. DOI: 10.1080/10426507.2015.1100184.
  • Naureen, S.; Ijaz, F.; Nazeer, A.; Chaudhry, F.; Munawar, M. A.; Khan, M. A. Facile, Eco-Friendly, One-Pot Protocol for the Synthesis of Indole-Imidazole Derivatives Catalyzed by Amino Acids. Synth. Commun. 2017, 47, 1478–1484. DOI: 10.1080/00397911.2017.1332766.
  • Al Munsur, A. Z.; Roy, H. N.; Imon, M. K. Highly Efficient and Metal-Free Synthesis of Tri- and Tetrasubstituted Imidazole Catalyzed by 3-Picolinic Acid. Arab. J. Chem. 2020, 13, 8807–8814. DOI: 10.1016/j.arabjc.2020.10.010.
  • Khan, K.; Siddiqui, Z. N. An Efficient Synthesis of Tri- and Tetrasubstituted Imidazoles from Benzils Using Functionalized Chitosan as Biodegradable Solid Acid Catalyst. Ind. Eng. Chem. Res. 2015, 54, 6611–6618. DOI: 10.1021/acs.iecr.5b00511.
  • Parthiban, D.; Karunakaran, R. J. Benzethonium Chloride Catalyzed One Pot Synthesis of 2,4,5-Trisubstituted Imidazoles and 1,2,4,5-Tetrasubstituted Imidazoles in Aqueous Ethanol as a Green Solvent. Orient. J. Chem. 2018, 34, 3004–3015. DOI: 10.13005/ojc/340642.
  • Bansal, R.; Soni, P. K.; Halve, A. K. Green Synthesis of 1,2,4,5-Tetrasubstituted and 2,4,5-Trisubstituted Imidazole Derivatives Involving One-Pot Multicomponent Reaction. J. Heterocycl. Chem. 2018, 55, 1308–1312. DOI: 10.1002/jhet.3160.
  • Bhadrachar, S.; Vijayakumar, G. R.; Mahadevan, K. M.; Basavaraja, T. Synthesis, Molecular Docking and Radical Scavenging Activity of 1,2,4,5-Tetrasubstituted Imidazole Derivatives. Asian J. Chem. 2019, 31, 2448–2452. DOI: 10.14233/ajchem.2019.22107.
  • Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Zahmatkesh, S. One-Pot Synthesis of Multisubstituted Imidazoles Catalyzed by Dendrimer-PWAn Nanoparticles under Solvent-Free Conditions and Ultrasonic Irradiation. Res. Chem. Intermed. 2017, 43, 163–185. DOI: 10.1007/s11164-016-2613-9.
  • Ren, Y. M.; Cai, C. Highly Efficient, One-Pot, Solvent-Free Synthesis of Highly Substituted Imidazoles Using Molecular Iodine as Catalyst. AMR 2011, 396–398, 1871–1874. DOI: 10.4028/www.scientific.net/AMR.396-398.1871.
  • Khoshneviszadeh, M.; Mahdavi, M. Appel Reagent as Novel Promoter for the Synthesis of Polysubstituted Imidazoles. Arkivoc 2017, 2017, 343–352. DOI: 10.24820/ark.5550190.p010.039.
  • Kerru, N.; Gummidi, L.; Bhaskaruni, S. V. H. S.; Maddila, S. N.; Jonnalagadda, S. B. Green Synthesis and Characterization of Novel 1,2,4,5-Tetrasubstituted Imidazole Derivatives with Eco-Friendly Red Brick Clay as Efficacious Catalyst. Mol. Divers. 2020, 24, 889–901. DOI: 10.1007/s11030-019-10000-5.
  • Patel, G.; Patel, A. R.; Banerjee, S. Visible Light-Emitting Diode Light-Driven One-Pot Four Component Synthesis of Poly-Functionalized Imidazoles under Catalyst-and Solvent-Free Conditions. New J. Chem. 2020, 44, 13295–13300. DOI: 10.1039/D0NJ02527E.
  • Mohammadi, A.; Keshvari, H.; Sandaroos, R.; Rouhi, H.; Sepehr, Z. A Novel Polymeric Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-Imidazoles. J. Chem. Sci. 2012, 124, 717–722. DOI: 10.1007/s12039-012-0248-y.
  • Reddy, B. P.; Vijayakumar, V.; Arasu, M. V.; Al-Dhabi, N. A. γ-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles. Molecules 2015, 20, 19221–19235. DOI: 10.3390/molecules201019221.
  • Kohan, E.; Gholamhosseini-Nazari, M.; Allahvirdinesbat, M.; Alemi, A. A. Green and Efficiently Synthesized Tetrasubstituted Imidazole: Introduced Bismuth Oxide co-Doped Lu3+, Er3+ as a Novel Reusable Heterogeneous Nanocatalyst. Inorg. Nano-Metal Chem. 2021, 51, 1036–1046. DOI: 10.1080/24701556.2020.1814327.
  • Gurav, S. S.; Waghmode, K. T.; Lotlikar, O. A.; Dandekar, S. N.; Jadhav, S. R. An Efficient One-Pot Synthesis of 2-Aryl-4,5-Diphenyl-1H-Imidazoles with Amberlite IR-120(H) as a Reusable Heterogeneous Catalyst. Org. Prep. Proced. Int. 2022, 54, 556–562. DOI: 10.1080/00304948.2022.2090221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.