Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 23
122
Views
0
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Organocatalytic upgrading of biomass-derived furaldehydes: An emerging chemical technology for biorefineries

&
Pages 1963-1980 | Received 18 Jul 2023, Published online: 13 Oct 2023

References

  • Chen, X.; Zhang, B.; Wang, Y. Z.; Yan, N. Valorization of Renewable Carbon Resources for Chemicals. Chimia (Aarau) 2015, 69, 120–124. DOI: 10.2533/chimia.2015.120.
  • Meninno, S. Organocatalytic Upgrading of Biomass Derived Building Blocks. Eur. J. Org. Chem. 2023, 26, 38–62. DOI: 10.1002/ejoc.202300264.
  • Xu, J. M.; Jiang, J. C.; Zhao, J. P. Thermochemical Conversion of Triglycerides for Production of Drop-in Liquid Fuels. Renewable & Sustainable Energy Reviews 2016, 58, 331–340. DOI: 10.1016/j.rser.2015.12.315.
  • Bulushev, D. A.; Ross, J. R. H. Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review. Catal. Today 2011, 171, 1–13. DOI: 10.1016/j.cattod.2011.02.005.
  • Shaikh, R. R.; Khan, R. A.; Alsalme, A. Highly Product-Selective and Scalable Rare-Earth Metal-Catalyzed Meinwald Rearrangement of Epoxy Oleochemicals under Solvent-Free Conditions. J. Ind. Eng. Chem. 2018, 64, 446–452. DOI: 10.1016/j.jiec.2018.03.041.
  • Nishimura, S.; Ebitani, K. Catalytic Conversions of Biomass-Derived Furaldehydes toward Biofuels. In Green Chemical Processing and Synthesis, Karame, I., Srour, H., Eds.; 2017. InTech DOI: 10.5772/67805.
  • Zang, H.; Chen, E. X. Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency. Int. J. Mol. Sci. 2015, 16, 7143–7158. DOI: 10.3390/ijms16047143.
  • Lanzafame, P.; Centi, G.; Perathoner, S. Catalysis for Biomass and CO2 Use through Solar Energy: Opening New Scenarios for a Sustainable and Low-Carbon Chemical Production. Chem. Soc. Rev. 2014, 43, 7562–7580. DOI: 10.1039/c3cs60396b.
  • Hatti-Kaul, R.; Mattiasson, B. Anaerobes in Industrial- and Environmental Biotechnology. Adv. Biochem. Eng. Biotechnol. 2016, 156, 1–33. DOI: 10.1007/10_2016_10.
  • Miandad, R.; Barakat, M. A.; Aburiazaiza, A. S.; Rehan, M.; Nizami, A. S. Catalytic Pyrolysis of Plastic Waste: A Review. Process Saf. Environ. Protect. 2016, 102, 822–838. DOI: 10.1016/j.psep.2016.06.022.
  • Shanmugam, S.; Hari, A.; Pugazhendhi, A.; Kikas, T. Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production. Energies 2023, 16, 4998. DOI: 10.3390/en16134998.
  • Ma, R.; Xu, Y.; Zhang, X. Catalytic Oxidation of Biorefinery Lignin to Value-Added Chemicals to Support Sustainable Biofuel Production. ChemSusChem 2015, 8, 24–51. DOI: 10.1002/cssc.201402503.
  • De, S.; Saha, B.; Luque, R. Hydrodeoxygenation Processes: Advances on Catalytic Transformations of Biomass-Derived Platform Chemicals into Hydrocarbon Fuels. Bioresour. Technol. 2015, 178, 108–118. DOI: 10.1016/j.biortech.2014.09.065.
  • Wu, L.; Moteki, T.; Gokhale Amit, A.; Flaherty David, W.; Toste, F. D. Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. Chem 2016, 1, 32–58. DOI: 10.1016/j.chempr.2016.05.002.
  • Shylesh, S.; Gokhale, A. A.; Ho, C. R.; Bell, A. T. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass. Acc. Chem. Res. 2017, 50, 2589–2597. DOI: 10.1021/acs.accounts.7b00354.
  • Yu, I. K. M.; Tsang, D. C. W. Conversion of Biomass to Hydroxymethylfurfural: A Review of Catalytic Systems and Underlying Mechanisms. Bioresour. Technol. 2017, 238, 716–732. DOI: 10.1016/j.biortech.2017.04.026.
  • Dutta, S.; Pal, S. Promises in Direct Conversion of Cellulose and Lignocellulosic Biomass to Chemicals and Fuels: Combined Solvent–Nanocatalysis Approach for Biorefinary. Biomass Bioenergy 2014, 62, 182–197. DOI: 10.1016/j.biombioe.2013.12.019.
  • Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System. Angew. Chem. Int. Ed. Engl. 2010, 49, 5510–5514. DOI: 10.1002/anie.201002060.
  • Besson, M.; Gallezot, P. Deactivation of Metal Catalysts in Liquid Phase Organic Reactions. Catal. Today 2003, 81, 547–559. DOI: 10.1016/S0920-5861(03)00153-6.
  • Michel, C.; Auneau, F.; Delbecq, F.; Sautet, P. C–H versus O–H Bond Dissociation for Alcohols on a Rh(111) Surface: A Strong Assistance from Hydrogen Bonded Neighbors. ACS Catal. 2011, 1, 1430–1440. DOI: 10.1021/cs200370g.
  • Mehdi, H.; Fabos, V.; Tuba, R.; Bodor, A.; Mika, L.; Horvath, I. T. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-Step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-Tetrahydrofuran, and Alkanes. Top. Catal. 2008, 48, 49–54. DOI: 10.1007/s11244-008-9047-6.
  • Zhang, Z.; Jackson, J. E.; Miller, D. J. Effect of Biogenic Fermentation Impurities on Lactic Acid Hydrogenation to Propylene Glycol. Bioresour. Technol. 2008, 99, 5873–5880. DOI: 10.1016/j.biortech.2007.10.027.
  • Čejka, J.; Centi, G.; Perez-Pariente, J.; Roth, W. J. Zeolite-Based Materials for Novel Catalytic Applications: Opportunities, Perspectives and Open Problems. J. Catal. Today 2012, 179, 2–15. DOI: 10.1016/j.cattod.2011.10.006.
  • MacMillan, D. W. C. The Advent and Development of Organocatalysis. Nature 2008, 455, 304–308. DOI: 10.1038/nature07367.
  • Bisogno, F. R.; Lopez-Vidal, M. G.; de, G. G. Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts in One-Pot Procedures. Adv. Synth. Catal. 2017, 359, 2026–2049. DOI: 10.1002/adsc.201700158.
  • Evans, C. S.; Davis, L. O. Recent Advances in Organocatalyzed Domino C-C Bond-Forming Reactions. Molecules 2018, 23, 33. DOI: 10.3390/molecules23010033.
  • Chanda, T.; Zhao, J. C. G. Recent Progress in Organocatalytic Asymmetric Domino Transformations. Adv. Synth. Catal. 2018, 360, 2–79. DOI: 10.1002/adsc.201701059.
  • Puglisi, A.; Benaglia, M.; Porta, R.; Coccia, F. Organocatalysis Chemistry in Flow. COCAT. 2015, 2, 79–101. DOI: 10.2174/2213337202666150513002701.
  • Vogel, P.; Lam, Y. H.; Simon, A.; Houk, K. N. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis. Catalysts 2016, 6, 128. DOI: 10.3390/catal6090128.
  • Wang, C. A.; Wang, W. Advances in Porous Organic Catalysis. Acta Chim. Sin. 2015, 73, 498–529. DOI: 10.6023/A15010019.
  • Du, Z. T.; Shao, Z. H. Combining Transition Metal Catalysis and Organocatalysis - An Update. Chem. Soc. Rev. 2013, 42, 1337–1378. DOI: 10.1039/c2cs35258c.
  • Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Proline-Catalyzed Asymmetric Formal alpha-Alkylation of Aldehydes via Vinylogous Iminium Ion Intermediates Generated from Arylsulfonyl Indoles. Angew. Chem. Int. Ed. Engl. 2008, 47, 8707–8710. DOI: 10.1002/anie.200803947.
  • List, B.; Lerner, R. A.; Barbas, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. DOI: 10.1021/ja994280y.
  • Feng, J.; Jiang, J.; Xu, J.; Yang, Z. One-Step Method to Produce Methyl-d-Glucoside from Lignocellulosic Biomass. RSC Adv. 2015, 5, 38783–38791. DOI: 10.1039/C5RA04514B.
  • Mirzaei, H. M.; Karimi, B. Sulphanilic Acid as a Recyclable Bifunctional Organocatalyst in the Selective Conversion of Lignocellulosic Biomass to 5-HMF. Green Chem. 2016, 18, 2282–2286. DOI: 10.1039/C5GC02440D.
  • Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities - A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. DOI: 10.1016/j.fuproc.2017.03.021.
  • Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.; Gagne, M. R. Metal-Free Deoxygenation of Carbohydrates. Angew. Chem. Int. Ed. Engl. 2014, 53, 1646–1649. DOI: 10.1002/anie.201306864.
  • Adduci, L. L.; Bender, T. A.; Dabrowski, J. A.; Gagne, M. R. Chemoselective Conversion of Biologically Sourced Polyols into Chiral Synthons (Vol 7, pg 576, 2015). Nat. Chem. 2015, 7, 759–759. DOI: 10.1038/Nchem.2331.
  • Caes, B. R.; Palte, M. J.; Raines, R. T. Organocatalytic Conversion of Cellulose into a Platform Chemical. Chem. Sci. 2013, 4, 196–199. DOI: 10.1039/c2sc21403b.
  • Deshpande, N.; Pattanaik, L.; Whitaker, M. R.; Yang, C.-T.; Lin, L.-C.; Brunelli, N. A. Selectively Converting Glucose to Fructose Using Immobilized Tertiary Amines. J. Catal. 2017, 353, 205–210. DOI: 10.1016/j.jcat.2017.07.021.
  • Zhang, L.; Xi, G.; Zhang, J.; Yu, H.; Wang, X. Efficient Catalytic System for the Direct Transformation of Lignocellulosic Biomass to Furfural and 5-Hydroxymethylfurfural. Bioresour. Technol. 2017, 224, 656–661. DOI: 10.1016/j.biortech.2016.11.097.
  • Dai, J.; Zhu, L.; Tang, D.; Fu, X.; Tang, J.; Guo, X.; Hu, C. Sulfonated Polyaniline as a Solid Organocatalyst for Dehydration of Fructose into 5-Hydroxymethylfurfural. Green Chem. 2017, 19, 1932–1939. DOI: 10.1039/C6GC03604J.
  • Liu, D.; Chen, E. Y. X. Diesel and Alkane Fuels from Biomass by Organocatalysis and Metal-Acid Tandem Catalysis. ChemSusChem 2013, 6, 2236–2239. DOI: 10.1002/cssc.201300476.
  • Wegenhart, B. L.; Yang, L.; Kwan, S. C.; Harris, R.; Kenttämaa, H. I.; Abu-Omar, M. M. From Furfural to Fuel: Synthesis of Furoins by Organocatalysis and Their Hydrodeoxygenation by Cascade Catalysis. ChemSusChem 2014, 7, 2742–2747. DOI: 10.1002/cssc.201402056.
  • Wang, L.; Chen, E. Y. X. Recyclable Supported Carbene Catalysts for High-Yielding Self-Condensation of Furaldehydes into C10 and C12 Furoins. ACS Catal. 2015, 5, 6907–6917. DOI: 10.1021/acscatal.5b01410.
  • Cywar, R. M.; Wang, L.; Chen, E. Y. X. Thermally Regulated Recyclable Carbene Catalysts for Upgrading of Biomass Furaldehydes. ACS Sustain. Chem. Eng. 2019, 7, 1980–1988. DOI: 10.1021/acssuschemeng.8b04190.
  • Li, H.; Saravanamurugan, S.; Yang, S.; Riisager, A. Catalytic Alkylation of 2-Methylfuran with Formalin Using Supported Acidic Ionic Liquids. ACS Sustain. Chem. Eng. 2015, 3, 3274–3280. DOI: 10.1021/acssuschemeng.5b00850.
  • Zhu, C.; Shen, T.; Liu, D.; Wu, J.; Chen, Y.; Wang, L.; Guo, K.; Ying, H.; Ouyang, P. Production of Liquid Hydrocarbon Fuels with Acetoin and Platform Molecules Derived from Lignocellulose. Green Chem. 2016, 18, 2165–2174. DOI: 10.1039/C5GC02414E.
  • Sosa, N.; Chanlek, N.; Wittayakun, J. Facile Ultrasound-Assisted Grafting of Silica Gel by Aminopropyltriethoxysilane for Aldol Condensation of Furfural and Acetone. Ultrason. Sonochem. 2020, 62, 104857. DOI: 10.1016/j.ultsonch.2019.104857.
  • Xu, M.; Richard, F.; Corbet, M.; Marion, P.; Clacens, J.-M. Upgrading of Furfural by Knœvenagel Condensation over Functionalized Carbonaceous Basic Catalysts. Catal. Commun. 2019, 130, 105777. DOI: 10.1016/j.catcom.2019.105777.
  • Zheng, H.-Y.; Zhu, Y.-L.; Teng, B.-T.; Bai, Z.-Q.; Zhang, C.-H.; Xiang, H.-W.; Li, Y.-W. Towards Understanding the Reaction Pathway in Vapour Phase Hydrogenation of Furfural to 2-Methylfuran. J. Mol. Catal. A: Chem. 2006, 246, 18–23. DOI: 10.1016/j.molcata.2005.10.003.
  • Liu, D.; Chen, E. Y. X. Integrated Catalytic Process for Biomass Conversion and Upgrading to C12 Furoin and Alkane Fuel. ACS Catal. 2014, 4, 1302–1310. DOI: 10.1021/cs500058p.
  • Rathod, P. V.; Nale, S. D.; Jadhav, V. H. Metal Free Acid Base Catalyst in the Selective Synthesis of 2,5-Diformylfuran from Hydroxymethylfurfural, Fructose, and Glucose. ACS Sustain. Chem. Eng. 2017, 5, 701–707. DOI: 10.1021/acssuschemeng.6b02053.
  • Wilson, J.; Chen, E. Y. X. Organocatalytic Cross-Coupling of Biofuranics to Multifunctional Difuranic C11 Building Blocks. ACS Sustain. Chem. Eng. 2016, 4, 4927–4936. DOI: 10.1021/acssuschemeng.6b01235.
  • Menon, R.; Biju, A. T.; Nair, V. Recent Advances in N-Heterocyclic Carbene (NHC)-Catalysed Benzoin Reactions. Beilstein J. Org. Chem. 2016, 12, 444–461. DOI: 10.3762/bjoc.12.47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.