Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 23
133
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultrasound mediated nano ZnO catalyzed synthesis of new α-aminophosphonates as potential anti-diabetic agents; an in silico ADMET, molecular docking study, α-amylase and α-glucosidase inhibitory activity

ORCID Icon, , , , &
Pages 2041-2060 | Received 05 Jul 2023, Published online: 15 Oct 2023

References

  • Krentz, A. J.; Bailey, C. Oral Antidiabetic Agents: Current Role in Type 2 Diabetes Mellitus. Drugs. 2005, 65, 385–411. DOI: 10.2165/00003495-200565030-00005.
  • Chiasson, J. L. Acarbose for the Prevention of Diabetes, Hypertension, and Cardiovascular Disease in Subjects with Impaired Glucose Tolerance: The Study to Prevent Non- Insulin-Dependent Diabetes Mellitus (STOP-NIDDM). Endocr. Pract. 2006, 12, 25–30. DOI: 10.4158/EP.12.S1.25.
  • Chen, X.; Zheng, Y.; Shen, Y. Voglibose (Basen, AO-128), One of the Most Important –Glucosidase Inhibitors. Curr. Med. Chem. 2006, 13, 109–116. DOI: 10.2174/092986706789803035.
  • Hanumantha Rao, A.; Madhava Rao, V.; Subramanyam, C.; Priyadarshini, P.; Someswara Rao, S.; Visweswara Rao, P. An in Silico ADMET, Molecular Docking Study and Microwave-Assisted Synthesis of New Phosphorylated Derivatives of Thiazolidinedione as Potential anti-Diabetic Agents. Synth. Comm. 2022, 52, 300–315. DOI: 10.1080/00397911.2021.2024574.
  • Altaff, S. K.; Md. Raja Rajeswari, T.; Subramanyam, C. Synthesis, α-Amylase Inhibitory Activity Evaluation and in Silico Molecular Docking Study of Some New Phosphoramidates Containing Heterocyclic Ring. Phosphorus, Sulfur Silicon Relat. Elem. 2021, 196, 389–397. DOI: 10.1080/10426507.2020.1845679.
  • Pavan Phani Kumar, M.; Anuradha, V.; Subramanyam, C.; Hari Babu, V. V. In Silico Molecular Docking Study, Synthesis and α-Amylase Inhibitory Activity Evaluation of Phosphorylated Derivatives of Purine. Phosph. Sulfur Silicon Relat. Elem. 2021, 196, 1010–1017. DOI: 10.1080/10426507.2021.1960833.
  • Sujatha, B.; Subramanyam, C.; Venkataramaiah, C.; Rajendra, W.; Prasada Rao, K. Synthesis and anti-Diabetic Activity Evaluation of Phosphonates Containing Thiazolidinedione Moiety. Phosphorus, Sulfur Silicon Relat. Elem. 2020, 195, 586–591. DOI: 10.1080/10426507.2020.1737061.
  • Bahrami, F.; Panahi, F.; Daneshgar, F.; Yousefi, R.; Shahsavani, M. B.; Khalafi-Nezhad, A. Synthesis of New α-Aminophosphonate Derivatives Incorporating Benzimidazole, Theophylline and Adenine Nucleobases Using l-Cysteine Functionalized Magnetic Nanoparticles (LCMNP) as Magnetic Reusable Catalyst: Evaluation of Their Anticancer Properties. RSC Adv 2016, 6, 5915–5924. DOI: 10.1039/C5RA21419J.
  • Lewkowski, J.; Moya, M. R.; Wrona-Piotrowicz, A.; Zakrzewski, J.; Kontek, R.; Gajek, G. Efficient Mechanochemical Synthesis of Regioselective Persubstituted Cyclodextrins. Beilstein. J. Org. Chem. 2016, 12, 1229–1235. DOI: 10.3762/bjoc.12.117.
  • Natchev, I. A. Synthesis, Enzyme-Substrate Interaction, and Herbicidal Activity of Phosphoryl Analogues of Lycine. Liebigs Ann. Chem. 1988, 1988, 861–867. DOI: 10.1002/jlac.198819880908.
  • Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Synthesis of Transition-State Analog Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041.
  • Maheshwara Reddy, N.; Poojith, N.; Mohan, G.; Mohan Reddy, Y.; Saritha, V. K.; Visweswara Rao, P. Antioxidant, and Plant Growth Regulatory Activities of Novel α-Furfuryl-2-Alkylaminophosphonates. ACS Omega. 2021, 6, 2934–2948. DOI: 10.1021/acsomega.0c05302.
  • Miller, D. J.; Hammond, S. M.; Anderluzzi, D.; Bugg, T. D. H. Aminoalkylphosphinate Inhibitors of D-Ala-D-Ala Adding Enzyme. J. Chem. Soc., Perkin Trans. 1 1998, 1, 131–142. DOI: 10.1039/a704097k.
  • Yang, S.; Gao, X.-W.; Diao, C.-L.; Song, B.-A.; Jin, L.-H.; Xu, G.-F.; Zhang, G.-P.; Wang, W.; Hu, D.-Y.; Xue, W.; et al. Synthesis and Antifungal Activity of Novel Chiral α-Aminophosphonates Containing Fluorine Moiety. Chin. J. Chem. 2006, 24, 1581–1588. DOI: 10.1002/cjoc.200690296.
  • Herczegh, P.; Buxton, T. B.; McPherson, J. C.; Kovács-Kulyassa, A.; Brewer, P. D.; Sztaricskai, F.; Stroebel, G. G.; Plowman, K. M.; Farcasiu, D.; Hartmann, J. F. Osteo Adsorptive Bisphosphonate Derivatives of Fluoroquinolone Antibacterials. J. Med. Chem. 2002, 45, 2338–2341. DOI: 10.1021/jm0105326.
  • Maier, L. Organic Phosphorus Compounds 91.1 Synthesis and Properties of 1-Amino-2-Arylethylphosphonic and-Phosphinic Acids as Well as-Phosphine Oxides. Phosph. Sulfur Silicon. Relat. Elem. 1990, 53, 43–67. DOI: 10.1080/10426509008038012.
  • Kuemin, M.; Donk, W. A. Structure-Activity Relationships of the Phosphonate Antibiotic Dehydrophos. Chem. Commun. 2010, 46, 7694–7696. DOI: 10.1039/c0cc02958k.
  • Bhattacharya, A. K.; Raut, D. S.; Rana, K. C.; Polanki, I. K.; Khan, M. S.; Iram, S. E. Diversity-Oriented Synthesis of α-Aminophosphonates: A New Class of Potential Anticancer Agents. Eur. J. Med. Chem. 2013, 66, 146–152. DOI: 10.1016/j.ejmech.2013.05.036.
  • Huang, X. C.; Wang, M.; Pan, Y. M.; Yao, G. Y.; Wang, H. S.; Tian, X. Y.; Qin, J. K.; Zhang, Y. Synthesis and Antitumor Activities of Novel Thiourea α-Aminophosphonates from Dehydroabietic Acid. Eur. J. Med. Chem. 2013, 69, 508–520. DOI: 10.1016/j.ejmech.2013.08.055.
  • Meyer, J. H.; Bartlett, P. A. Macrocyclic Inhibitors of Penicillopepsin: Design, Synthesis, and Evaluation of an Inhibitor Bridged between P1 and P3. J. Am. Chem. Soc. 1998, 120, 4600–4609. DOI: 10.1021/ja973715j.
  • Haji Basha, M.; Subramanyam, C.; Prasada Rao, K. Ultrasound-Promoted Solvent-Free Synthesis of Some New α-Aminophosphonates as Potential Antioxidants. Main Group Met. Chem. 2020, 43, 147–153. DOI: 10.25135/acg.oc.123.2112.2279.
  • Sujatha, B.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Microwave-Assisted Synthesis and anti-Inflammatory Activity Evaluation of Some Novel α-Aminophosphonates. Phosphorus, Sulfur. Silicon Relat. Elem. 2017, 192, 1110–1113. DOI: 10.1080/10426507.2017.1331233.
  • Xie, X. L.; Li, R. K. Y.; Liu, Q. X.; Mai, Y. W. Structure-Property Relationships of in-Situ PMMA Modified Nano-Sized Antimony Trioxide Filled Poly(Vinyl Chloride) Nanocomposites. Polymer. 2004, 45, 2793–2802. DOI: 10.1016/j.polymer.2004.02.028.
  • Kuznetsov, Y. I.; Kazanskaya, G. Y.; Tsirulnikova, N. V. Aminophosphonate Corrosion Inhibitors for Steel. Prot. Met. 2003, 39, 120–123. DOI: 10.1023/A:1022986625711.
  • Bayer, E.; Gugel, K. H.; Hägele, K.; Hagenmaier, H.; Jessipow, S.; König, W. A.; Zähner, H. Metabolites of Microorganisms. 98th Communication. Phosphinothricin and Phosphinothricyl-Alanylalanine. Helv. Chim. Acta. 1972, 55, 224–239. DOI: 10.1002/hlca.19720550744.
  • Ordonez, M.; Cabrera, H. R.; Cativiela, C. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives. Tetrahedron. 2009, 65, 17–49. DOI: 10.1016/j.tet.2008.09.083.
  • Kabachnik, M. I.; Medved, T. Y. New Synthesis of Aminophosphonic Acids. Dokl. Akad. Nauk SSSR. 1952, 83, 689–692.
  • Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. DOI: 10.1021/ja01126a054.
  • Lewkowski, J.; Tokarz, P.; Lis, T.; Ślepokura, K. Stereoselective Addition of Dialkyl Phosphites to di-Salicylaldimines Bearing the (R,R)-1,2-Diaminocyclohexane Moiety. Tetrahedron. 2014, 70, 810–816. DOI: 10.1016/j.tet.2013.12.042.
  • Motevalli, S.; Iranpoor, N.; Etemadi-Davan, E.; Moghadam, K. R. Exceptional Effect of Nitro Substituent on the Phosphonation of Imines: The First Report on Phosphonation of Imines to α-Iminophosphonates and α-(N-Phosphorylamino)Phosphonates. RSC Adv. 2015, 5, 100070–100076. DOI: 10.1039/C5RA14393D.
  • Kaboudin, B.; Kazemi, F.; Hosseini, N. K. A Novel Straightforward Synthesis of α-Aminophosphonates: One-Pot Three-Component Condensation of Alcohols, Amines, and Diethylphosphite in the Presence of CuO@Fe3O4 Nanoparticles as a Catalyst. Res. Chem. Intermed. 2017, 43, 4475–4486. DOI: 10.1007/s11164-017-2890-y.
  • Ravikumar, D.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Solvent-Free Sonochemical Kabachnic-Fields Reaction to Synthesize Some New α-Aminophosphonates Catalyzed by nano-BF3 SiO2. Phosph. Sulfur. Silicon. Relat. Elem. 2018, 193, 400–407. DOI: 10.1080/10426507.2018.1424163.
  • Syama Sundar, C.; Bakthavatchala Reddy, N.; Sivaprasad, S.; Uma Maheswara Rao, K.; Jaya Prakash, S. H.; Suresh Reddy, C. Tween-20: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates in Aqueous Media. Phosph. Sulfur. Silicon. Relat. Elem. 2012, 187, 523–534. DOI: 10.1080/10426507.2011.631641.
  • Farahani, N.; Akbari, J. Organocatalytic Synthesis of α-Aminophosphonates Using o-Benzenedisulfonimide as a Recyclable Bronsted Acid Catalyst. Lett. Org. Chem. 2017, 14, 483–487. DOI: 10.2174/1570178614666170321123731.
  • Sreekanth Reddy, P.; Vasu Govardhana Reddy, P.; Mallikarjun Reddy, S. Phosphomolybdic Acid Promoted Kabachnik-Fields Reaction: An Efficient One-Pot Synthesis of α-Aminophosphonates from 2-Cyclopropylpyrimidine-4-Carbaldehyde. Tetrahedron Lett. 2014, 55, 3336–3339. DOI: 10.1016/j.tetlet.2014.04.053.
  • Mohammadiyan, E.; Ghafuri, H.; Kakanejadifard, A. A New Procedure for Synthesis of α-Aminophosphonates by Aqueous Formic Acid as an Effective and Environment-Friendly Organocatalyst. J. Chem. Sci. 2017, 129, 1883–1891. DOI: 10.1007/s12039-017-1394-z.
  • Ghafuri, H.; Rashidizadeh, A.; Zand, H. R. E. Highly Efficient Solvent Free Synthesis of α-Aminophosphonates Catalyzed by Recyclable Nano-Magnetic Sulfated Zirconia (Fe3O4@ZrO2/SO42−). RSC Adv. 2016, 6, 16046–16054. DOI: 10.1039/C5RA13173A.
  • Wang, A.; Xu, Y.; Gao, Y.; Huang, Q.; Luo, X.; An, H.; Dong, J. Chemical and Bioactive Diversities of the Genera Stachybotrys and Memnoniella Secondary Metabolites. Phytochem. Rev. 2015, 14, 623–655. DOI: 10.1007/s11101-014-9365-1.
  • Sreekanth Reddy, P.; Vasu Govardhana Reddy, P. Mallikarjun Reddy, S. 2,4,6-Tris(4-Iodophenoxy)-1,3,5-Triazine as a New Recyclable “Iodoarene” for in Situ Generation of Hypervalent Iodine(III) Reagent for α-Tosyloxylation of Enolizable Ketones. Tetrahedron Lett. 2014, 55, 3336–3342. DOI: 10.1016/j.tetlet.2014.04.052.
  • Azaam, M. M.; Kenawy, E. R.; El-Din, S. B.; Khamis, A. A.; El-Magd, M. A. Antioxidant and Anticancer Activities of α-Aminophosphonates Containing Thiadiazole Moiety. J. Saudi. Chem. Soc. 2018, 22, 34–41. DOI: 10.1016/j.jscs.2017.06.002.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-Pot, Three-Component Condensation of Carbonyl Compound, Amine, and Diethyl Phosphite without Solvent and Catalyst. Green Chem. 2002, 4, 551–554. DOI: 10.1039/B205747F.
  • Anastas, P. T.; Kirchhoff, M. M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. DOI: 10.1021/ar010065m.
  • Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green. Chem. 2005, 7, 267–278. DOI: 10.1039/b418069k.
  • Luche, J. L. Synthetic Organic Sonochemistry; New York: Plenum Press, 1998. DOI: 10.1007/978-1-4899-1910-6.
  • Cella, R.; Stefani, H. Ultrasound in Heterocycles Chemistry. Tetrahedron 2009, 65, 2619–2641. DOI: 10.1016/j.tet.2008.12.027.
  • Kirti, S. N.; Bapurao, B. S.; Murlidhar, S. S. Solvent-Free Sonochemical Preparation of α-Aminophosphonates Catalyzed by 1-Hexanesulphonic Acid Sodium Salt. Ultrason. Sonochem. 2010, 17, 760–763. DOI: 10.1016/j.ultsonch.2010.02.002.
  • Takao, K.; Ishikawa, R.; Sugita, Y. Synthesis and Biological Evaluation of 3-Styrylchromone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors. Chem. Pharm. Bull. 2014, 62, 810–815. DOI: 10.1016/j.bioorg.2019.103285.
  • Guangcheng, W.; Ming, C.; Jing, W.; Yaping, P.; Luyao, L.; Zhen, Z. X.; Bing, D.; Shan, C.; Wenbiao, L. Synthesis, Biological Evaluation and Molecular Docking Studies of Chromone Hydrazone Derivatives as α-Glucosidase Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 2957–2961. DOI: 10.1016/j.bmcl.2017.05.007.
  • Guangcheng, W.; Ming, C.; Jie, Q.; Zhenzhen, X.; Anbai, C. Synthesis, in Vitro α-Glucosidase Inhibitory Activity and Docking Studies of Novel Chromone-Isatin Derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 113–116. DOI: 10.1016/j.bmcl.2017.11.047.
  • Valentina, P.; Ilango, K.; Subhash, C.; Murugesan, S. A. Design, Synthesis and α-Amylase Inhibitory Activity of Novel Chromone Derivatives. Bioorg. Chem. 2017, 74, 158–165. DOI: 10.1016/j.bioorg.2017.07.018.
  • Madhu Kumar Reddy, K.; Mohan, G.; Bakthavatchala Reddy, N.; Sravya, G.; Peddanna, K.; Grigory, V. Z.; Sridevi, C.; Suresh Reddy, C. Synthesis, Antioxidant Activity, and α-Glucosidase Enzyme Inhibition of α-Aminophosphonate Derivatives Bearing Piperazine-1,2,3-Triazole Moiety. J. Heterocycl. Chem. 2021, 58, 172–181. DOI: 10.1002/jhet.4157.
  • Priyadarsini, P.; Madhava Rao, V.; Hanumatha Rao, A.; Subramanyam, C.; Ranganayakulu, Y. A Simple, Efficient Synthesis and Molecular Docking Studies of 2-Styrylchromones. Org. Commun. 2021, 2021, 121–132. DOI: 10.25135/acg.oc.103.21.02.1959.
  • Haji Basha, M.; Subramanyam, C.; Gladis Raja Malar, C.; Someswara Rao, S.; Prasada Rao, K. Nano TiO2.SiO2 Catalyzed, Microwave Assisted Synthesis of New α-Aminophosphonates as Potential anti-Diabetic Agents: In Silico ADMET and Molecular Docking Study. Org. Commun. 2022, 15, 167–183. DOI: 10.25135/acg.oc.123.2112.2279.
  • Subramanyam, C.; Thaslim Basha, S.; Madhava, G.; Nayab Rasool, S.; Adam, S.; Durga Srinivasa Murthy, S.; Naga Raju, C. Solvent-Free Sonochemical Kabachnic-Fields Reaction to Synthesize Some New α-Aminophosphonates Catalyzed by nano-BF3.SiO2. Phosph. Sulfur. Silicon. Relat. Elem. 2017, 192, 267–270. DOI: 10.1080/10426507.2018.1424163.
  • Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2001, 34, 181–190. DOI: 10.1021/ar000110a.
  • Bubun, B. Recent Developments on nano-ZnO Catalyzed Synthesis of Bioactive Heterocycles. J. Nanostructure. Chem. 2017, 7, 389–413. DOI: 10.1007/s40097-017-0247-0.
  • (a) Redjemia, R.; Berredjem, M.; Bahadi, R. Green and Cost-Effective Synthesis of Sulfamidophosphonates Using ZnO Nanoparticles as Catalyst. Eng. Proc. 2017, 10, S1774. (b) Shantikumar, N.; Abhilash, S.; Divya Rani, V. V.; Deepthy, M.; Seema, N.; Manzoor, K.; Satish, R. Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. J. Mater Sci. Mater Med. 2009, 20, S235–S1780. DOI: 10.1007/s10856-008-3548-5. (c). Safaei-Ghomi, J.; Ali Ghasemzadeh, Md. Zinc Oxide Nanoparticle Promoted Highly Efficient One Pot Three-Component Synthesis of 2,3-Disubstituted Benzofurans. Arab. J. Chem. 2017, 10, S1774–S1780. DOI: 10.1016/j.arabjc.2013.06.030. DOI: 10.1007/s10311-018-0772-1. (d) Harshita, S.; Rekha S. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water. The Sci. World J., 2013, 10, 680671. DOI: 10.1155/2013/680671. (e). Satish Kumar, N.; Sameer Reddy, M.; Vema Reddy, B.; Saratchandra Babu, M.; Raju Chowhan, L. Chandrasekhara Rao, L. Zinc Oxide Nanoparticles as Efficient Catalyst for the Synthesis of Novel di-Spiroindolizidine Bisoxindoles in Aqueous Medium. Environ. Chem. Lett. 2019, 17, 455–464.
  • Hay, M.; Thomas, D. W.; Craighead, J. L.; Economides, C.; Rosenthal, J. Clinical Development Success Rates for Investigational Drugs. Nat. Biotechnol. 2014, 32, 40–51. DOI: 10.1038/nbt.2786.
  • Daina, A.; Zoete, V. A Boiled-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem. Med. Chem. 2016, 11, 1117–1121. DOI: 10.1002/cmdc.201600182.
  • Montanari, F.; Ecker, G. F. Prediction of drug-ABC-Transporter Interaction-Recent Advances and Future Challenges. Adv. Drug. Deliv. Rev. 2015, 86, 17–26. DOI: 10.1016/j.addr.2015.03.001.
  • Hollenberg, P. F. Characteristics and Common Properties of Inhibitors, Inducers, and Activators of CYP Enzymes. Drug. Metab. Rev. 2002, 34, 17–35. DOI: 10.1081/dmr-120001387.
  • Shiew-Mei, H.; John, M. S.; Lei, Z.; Kellie, S. R.; Srikanth, N.; Robert, T. New Era in Drug Interaction Evaluation: US Food and Drug Administration Update on CYP Enzymes, Transporters, and the Guidance Process. J. Clin. Pharmacol. 2008, 48, 662–670. DOI: 10.1177/0091270007312153.
  • Potts, R. O.; Guy, R. H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. DOI: 10.1023/a:1015810312465.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug. Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0.
  • Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. Chem. A. 1998, 102, 3762–3772. DOI: 10.1021/jp980230o.
  • Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • Egan, W. J.; Lauri, G. Prediction of Intestinal Permeability. Adv. Drug. Deliv. Rev. 2002, 54, 273–289. DOI: 10.1016/s0169-409x(02)00004-2.
  • Muegge, I.; Heald, S. L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. DOI: 10.1021/jm015507e.
  • Trott, O.; Olson, A. J. Auto Dock Vina: improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Nickavar, B.; Amin, G. Enzyme Assay Guided Isolation of an Alpha-Amylase Inhibitor Flavonoid from Vaccinium Arctostaphylos Leaves. Iran J. Pharm. Res. 2011, 10, 849–853. PMC3813050.
  • Patil, V. S.; Nandre, K. P.; Ghosh, S.; Rao, V. J.; Chopade, B. A.; Sridhar, B.; Bhosale, S. V.; Bhosale, S. V. Synthesis, Crystal Structure and anti-Diabetic Activity of Substituted (E)-3-(Benzo[d]Thiazol-2-Ylamino)Phenylprop-2-en-1-One. Eur. J. Med. Chem. 2013, 59, 304–309. DOI: 10.1016/j.ejmech.2012.11.020.
  • Kim, J. S.; Hyun, T. K.; Kim, M. J. The Inhibitory Effects of Ethanol Extracts from Sorghum, Foxtail Millet and Proso Millet on α-Glucosidase and α-Amylase Activities. Food Chem. 2011, 124, 1647–1651. DOI: 10.1016/j.foodchem.2010.08.020.
  • Samir, P.; Umang, S. Synthesis of Flavones from 2-Hydroxy Acetophenone and Aromatic Aldehyde Derivatives by Conventional Methods and Green Chemistry Approach. Asian J. Pharm. Clin. Res. 2017, 10, 403–406. DOI: 10.22159/ajpcr.2017.v10i2.15928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.