Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 3
102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green and eco-friendly synthesis of quinolone substituted indolyl-4H-chromenes via C–C bond formation

, , &
Pages 207-215 | Received 29 Aug 2023, Published online: 15 Dec 2023

References

  • Tillotson, G. S. Quinolones: Structure-Activity Relationships and Future Predictions. J. Med. Microbiol. 1996, 44, 320–324. DOI: 10.1099/00222615-44-5-320.
  • Wiles, J. A.; Bradbury, B. J.; Pucci, M. New Quinolone Antibiotics: A Survey of the Literature from 2005 to 2010. J. Expert. Opin. Ther. Pat. 2010, 20, 1295–1319. DOI: 10.1517/13543776.2010.505922.
  • Chung, H. S.; Woo, W. S. A Quinolone Alkaloid with Antioxidant Activity from the Aleurone Layer of Anthocyanin-Pigmented Rice. J. Nat. Prod. 2001, 64, 1579–1580. DOI: 10.1021/np010324g.
  • Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J., Antifungal Properties of New Series of Quinoline Derivatives. J. Bioorg. Med. Chem. 2006, 14, 3592–3598. DOI: 10.1016/j.bmc.2006.01.016.
  • Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M. E.; Giliberti, G.; Iuliano, F.; et al. Quinoline Tricyclic Derivatives. Design, Synthesis and Evaluation of the Antiviral Activity of Three New Classes of RNA-Dependent RNA Polymerase Inhibitors. Bioorg. Med. Chem. 2011, 19, 7070–7084. DOI: 10.1016/j.bmc.2011.10.009.
  • Mariyana, A.; Ilieva, S.; Galabov, B. QSAR Analysis of 1,4-Dihydro-4-Oxo-1-(2-Thiazolyl)-1,8-Naphthyridines with Anticancer Activity. Eur. J. Med. Chem. 2007, 42, 1184–1192. DOI: 10.1016/j.ejmech.2007.01.029.
  • Wen, X.; Wang, S. B.; Liu, D. C.; Gong, G. H.; Quan, Z. S. Synthesis and Evaluation of the anti-Inflammatory Activity of Quinoline Derivatives. Med. Chem. Res. 2015, 24, 2591–2603. DOI: 10.1007/s00044-015-1323-y.
  • Desai, N. C.; Patel, B. Y.; Dave, B. P. Synthesis and Antimicrobial Activity of Novel Quinoline Derivativesbearing Pyrazoline and Pyridine Analogues. Med. Chem. Res. 2017, 26, 109–119. DOI: 10.1007/s00044-016-1732-6.
  • Theeraladanon, C.; Arisawa, M.; Nishida, A.; Nakagawa, M. A Novel Synthesis of Substituted Quinolines Using Ring-Closing Metathesis (RCM): Its Application to the Synthesis of Key Intermediates for Anti-Malarial Agents. Tetrahedron. 2004, 60, 3017–3035. DOI: 10.1016/j.tet.2004.01.084.
  • Aubry, C.; Patel, A.; Mahale, S.; Chaudhuri, B.; Maréchal, J.-D.; Sutcliffe, M. J.; Jenkins, P. R. The Design and Synthesis of Novel 3-[2-Indol-1-yl-Ethyl]-1H-Indole Derivatives as Selective Inhibitors of CDK4. Tetrahedron. Lett. 2005, 46, 1423–1425. DOI: 10.1016/j.tetlet.2005.01.054.
  • Radwan, M. A.; Ragab, E. A.; Sabry, N. M.; El-Shenawy, S. M. Synthesis and Biological Evaluation of New 3-Substituted Indole Derivatives as Potential anti-Inflammatory and Analgesic Agents. Bioorg. Med. Chem. 2007, 15, 3832–3841. DOI: 10.1016/j.bmc.2007.03.024.
  • Fouda, A. M. Synthesis of Several 4H-Chromene Derivatives of Expected Antitumor Activity. Med. Chem. Res. 2016, 25, 1229–1238. DOI: 10.1007/s00044-016-1565-3.
  • Harshad, G. K.; Manish, P. P. Microwave-Assisted Synthesis of 3’-Indolyl Substituted 4H-Chromenes Catalysed by DMAP and Their Antimicrobial Activity. Med. Chem. Res. 2012, 21, 3406–3416. DOI: 10.1007/s00044-011-9861-4.
  • Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; et al. Scope of 3D Shape-Based Approaches in Predicting the Macromolecular Targets of Structurally Complex Small Molecules Including Natural Products and Macrocyclic Ligands. J. Med. Chem. 2007, 50, 2858–2864. DOI: 10.1021/ACS.JCIM.0C00161.
  • Subbareddy, C. V.; Sumathi, S. One-Pot Three-Component Protocol for the Synthesis of Indolyl-4H-Chromene-3-Carboxamides as Antioxidant and Antibacterial Agents. New J. Chem. 2017, 41, 9388–9396. DOI: 10.1039/C7NJ00980A.
  • Muralimohan, G.; Pannala, P.; Seema, A.; Pedavenkatagari, N. R. An Efficient One-Pot Synthesis of Indolyl-4H-Chromene Derivatives. Chem. Heterocycl. Compd. 2021, 57, 1176–1180. DOI: 10.1007/s10593-021-03040-z.
  • Thakur, A.; Linga Reddy, P.; Tripathi, M.; Rawat, D. S. Facile Construction of 3-Indolochromenes and 3-Indoloxanthenes via EDDF Catalyzed One-Pot Three Component Reactions. New J. Chem. 2015, 39, 6253–6260. DOIorg/ DOI: 10.1039/C5NJ01288K.
  • Rajesh, U. C.; Wang, J.; Prescott, S.; Tsuzuki, T.; Rawat, D. S. RGO/ZnO Nanocomposite: An Efficient, Sustainable, Heterogeneous, Amphiphilic Catalyst for Synthesis of 3-Substituted Indoles in Water. ACS Sustainable Chem. Eng. 2015, 3, 9–18. DOI: 10.1021/sc500594w.
  • Nanda, B.; Sailaja Sailu, M.; Mohapatra Priyaranjan, P.; Pradhan Ranjan, R. K.; Nanda, B. B. Green Solvents: A Suitable Alternative for Sustainable Chemistry. Mater. Today Proc. 2021, 47, 1234–1240. DOI: 10.1016/j.matpr.2021.06.458.
  • Dindulkar, S. D.; Jeong, D.; Cho, E.; Kim, D.; Jung, S. Microbial Cyclosophoraose as a Catalyst for the Synthesis of Diversified Indolyl 4H-Chromenes via One-Pot Three Component Reactions in Water. Green Chem. 2016, 18, 3620–3627. DOI: 10.1039/C6GC00137H.
  • Maleki, B.; Sedigh Ashrafi, S.; Tayebe, R. Lewis Acid Free Synthesis of 3,4-Dihydro-1H-Indazolo[1,2-b]Phthalazine-1,6,11(2H,13H)-Triones Promoted by 1,1,1,3,3,3-Hexafluoro-2-Propanol. RSC Adv. 2014, 4, 41521–41528. DOI: 10.1039/C4RA06768A.
  • Maleki, B. Solvent-Free Synthesis of 2,4,6-Triarylpyridine Derivatives Promoted by 1,3-Dibromo-5,5-Dimethylhydantoin. Org. Prep. Proced. Int. 2015, 47, 173–178. DOI: 10.1080/00304948.2015.1005990.
  • Taghavi, R.; Rostamnia, S. Four-Component Synthesis of Polyhydroquinolines via Unsymmetrical Hantzsch Reaction Employing Cu-IRMOF-3 as a Robust Heterogeneous Catalyst. Chem. Methodol. 2022, 6, 639–648. DOI: 10.22034/chemm.2022.340599.1511.
  • Moosavi-Zare, A. R.; Goudarziafshar, H.; Jalilian, Z.; Hosseinabadi, F. Efficient Pseudo-Six-Component Synthesis of Tetrahydro-Pyrazolopyridines Using [Zn-2BSMP]Cl2. Chem. Methodol. 2022, 6, 571–581. DOI: 10.22034/chemm.2022.334202.1456.
  • Chatterjee, A.; Cutler, S. J.; Khan, I.; Williamson, J. S. Efficient Synthesis of 4-Oxo-4,5-Dihydrothieno[3,2-] Quinoline-2-Carboxylic Acid Derivatives from Aniline. Mol. Divers. 2014, 18, 51–59. DOI: 10.1007/s11030-013-9476-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.