Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 4
131
Views
0
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Synthetic Approaches and Biological Applications of Aminopyrazolecarbonitriles

, , &
Pages 239-267 | Received 09 Oct 2023, Published online: 20 Dec 2023

References

  • Naim, M. J.; Alam, O.; Nawaz, F.; Alam, J.; Alam, P. Current Status of Pyrazole and Its Biological Activities. J. Pharm. Bioallied Sci. 2016, 8, 2–17. DOI: 10.4103/0975-7406.171694.
  • Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives. Molecules 2018, 23, 134. DOI: 10.3390/molecules23010134.
  • Ebenezer, O.; Shapi, M.; Tuszynski, J. A.; Ebenezer, O.; Shapi, M.; Tuszynski, J. A. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022, 10, 1124. DOI: 10.3390/biomedicines10051124.
  • Maddila, S.; Jonnalagadda, S. B.; Gangu, K. K.; Maddila, S. N. Environmentally Friendly Syntheses of Imines Applying the Pressure Reduction Technique: Reaction Cases of Less Reactive Amines and Studies by Computational Chemistry. Curr. Org. Synth. 2017, 14, 6531–6534. DOI: 10.2174/1570179414666161208164731.
  • Becerra, D.; Abonia, R.; Castillo, J.-C. Recent Applications of the Multicomponent Synthesis for Bioactive Pyrazole Derivatives. Molecules 2022, 27, 4723. DOI: 10.3390/molecules27154723.
  • Sadeghpour, M.; Olyaei, A. Recent Advances in the Synthesis of Bis (Pyrazolyl) Methanes and Their Applications. Res. Chem. Intermed. 2021, 47, 4399–4441. DOI: 10.1007/s11164-021-04592-7.
  • Mali, G.; Shaikh, B. A.; Garg, S.; Kumar, A.; Bhattacharyya, S.; Erande, R. D.; Chate, S. V. Design, Synthesis, and Biological Evaluation of Densely Substituted Dihydropyrano[2,3-c]Pyrazoles via a Taurine-Catalyzed Green Multicomponent Approach. ACS Omega 2021, 6, 30734–30742. DOI: 10.1021/acsomega.1c04773.
  • El-Assaly, S. A.; Ismail, A. E. H. A.; Bary, H. A.; Abouelenein, M. G. Synthesis, Molecular Docking Studies, and Antimicrobial Evaluation of Pyrano[2,3-c]Pyrazole Derivatives. Curr. Chem. Lett. 2021, 10, 309–328. DOI: 10.5267/j.ccl.2021.3.003.
  • Abdel-Megid, M. Utilities of Active Methylene Compounds and Heterocycles Bearing Active Methyl or Having an Active Methine in the Formation of Bioactive Pyrazoles and Pyrazolopyrimidines. J. Synth. Commun. 2022, 50, 3563–3591. DOI: 10.1080/00397911.2020.1807570.
  • Teleb, M. A. M.; Hassaneen, H. M.; Abdelhamid, I. A.; Saleh, F. M. 5-Aminopyrazole-4-Carbonitriles as Precursors to Novel 4-Aminotetrahydropyrazolo[3,4-b]Quinolin-5-Ones and N-(4-Cyanopyrazol-5-yl)Pyridine-3-Carbonitrile. Synth. Commun. 2021, 51, 2357–2364. DOI: 10.1080/00397911.2021.1936059.
  • Al-Qalaf, F.; Mandani, F.; Abdelkhalik, M. M.; Bassam, A. A. Synthesis of 5-Substituted 3-Amino-1H-Pyrazole-4-Carbonitriles as Precursors for Microwave Assisted Regiospecific Syntheses of Pyrazolo[1,5-a]Pyrimidines. Molecules 2009, 14, 78–88. DOI: 10.3390/molecules14010078.
  • Hoepping, A.; Diekers, M.; Deuther-Conrad, W.; Scheunemann, M.; Fischer, S.; Hiller, A.; Wegner, F.; Steinbach, J.; Brust, P. Synthesis of Fluorine Substituted Pyrazolopyrimidines as Potential Leads for the Development of PET-Imaging Agents for the GABAA Receptors. Bioorg. Med. Chem. 2008, 16, 1184–1194. DOI: 10.1016/j.bmc.2007.10.079.
  • Wawer, I.; Pisklak, M.; Chilmonczyk, Z. J. 1H, 13C, 15N NMR Analysis of Sildenafil Base and Citrate (Viagra) in Solution, Solid State and Pharmaceutical Dosage Forms. J. Pharm. Biomed. Anal. 2005, 38, 865–870. DOI: 10.1016/j.jpba.2005.01.046.
  • Anwar, H. F.; Elnagdi, M. H. Recent Developments in Aminopyrazole Chemistry. Arkivoc 2009, 2009, 198–250. DOI: 10.3998/ark.5550190.0010.107.
  • Secrieru, A.; O'Neill, P. M.; Cristiano, M. L. S. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 2020, 25, 42. DOI: 10.3390/molecules25010042.
  • Hecht, S. M.; Werner, D.; Traficante, D. D.; Sundaralingam, M.; Prusiner, P.; Ito, T.; Sakurai, T. Structure Determination of the N-Methyl Isomers of 5-Amino-3,4-Dicyanopyrazole and Certain Related Pyrazolo[3,4-d]Pyrimidines. J. Org. Chem. 1975, 40, 1815–1822. DOI: 10.1021/jo00900a029.
  • Maddila, S.; Rana, S.; Pagadala, R.; Kankala, S.; Maddila, S.; Jonnalagadda, S. B. Synthesis of Pyrazole-4-Carbonitrile Derivatives in Aqueous Media with CuO/ZrO2 as Recyclable Catalyst. Catal. Commun. 2015, 61, 26–30. DOI: 10.1016/j.catcom.2014.12.005.
  • Mathapati, R.; Sakhare, J. F.; Swami, M. B.; Dawle, J. K. Application of Green Solvent in Synthesis of Thiophenytoins Using Aryl Thioureas. Der Pharm. Chem. 2012, 4, 2248.
  • Mathapati, S. R.; Jadhav, A. H.; Swami, M. B.; Dawle, J. K. Zinc Sulfamate Catalyzed Efficient Selective Synthesis of Benzimidazole Derivatives under Ambient Conditions. Lett. Org. Chem. 2019, 16, 740–749. DOI: 10.2174/1570178616666181211094040.
  • Azarifar, D.; Khatami, S.-M.; Zolfigol, M. A.; Nejat-Yami, R. Nano-Titania Sulfuric Acid-Promoted Synthesis of Tetrahydrobenzo[b]Pyran and 1,4-Dihydropyrano[2,3-c]Pyrazole Derivatives under Ultrasound Irradiation. J. Iran. Chem. Soc. 2014, 11, 1223–1230. DOI: 10.1007/s13738-013-0392-4.
  • Shaabani, A.; Sarvary, A.; Rezayan, A. H.; Keshipour, S. Synthesis of Fully Substituted Pyrano[2,3-c] Pyrazole Derivatives via a Multicomponent Reaction of Isocyanides. Tetrahedron 2009, 65, 3492–3495. DOI: 10.1016/j.tet.2009.02.035.
  • Damera, T.; Pagadala, R.; Rana, S.; Jonnalagadda, S. B. A Concise Review of Multicomponent Reactions Using Novel Heterogeneous Catalysts under Microwave Irradiation. Catalysts 2023, 13, 1034. DOI: 10.3390/catal13071034.
  • Liandi, A. R.; Cahyana, A. H.; Jauhari, A.; Kusumah, F.; Lupitasari, A.; Alfariza, D. N.; Nuraini, R.; Sari, R. W.; Kusumasari, F. C. Recent Trends of Spinel Ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) Applications as an Environmentally Friendly Catalyst in Multicomponent Reactions. Case Stud. Chem. Environ. Eng. 2023, 7, 100303. DOI: 10.1016/j.cscee.2023.100303.
  • Poonam  ; Singh, R. Facile One-Pot Synthesis of 5-Amino-1H-Pyrazole-4-Carbonitriles Using Alumina–Silica-Supported MnO2 as Recyclable Catalyst in Water. Res. Chem. Intermed. 2019, 45, 4531–4542. DOI: 10.1007/s11164-019-03847-8.
  • Arora, P.; Rajput, J. K. One-Pot Multicomponent Click Synthesis of Pyrazole Derivatives Using Cyclodextrin-Supported Capsaicin Nanoparticles as Catalyst. J. Mater. Sci. 2017, 52, 11413–11427. DOI: 10.1007/s10853-017-1304-2.
  • Badhe, K.; Dabholkar, V.; Kurade, S. One-Pot Synthesis of 5-Amino-1H-Pyrazole-4-Carbonitrile Using Calcined Mg-Fe Hydrotalcite Catalyst. Curr. Organocatal. 2018, 5, 3–12. DOI: 10.2174/2213337205666180516094624.
  • Srivastava, M.; Rai, P.; Singh, J.; Singh, J. An Environmentally Friendlier Approach-Ionic Liquid Catalyzed, Water Promoted and Grinding Induced Synthesis of Highly Functionalized Pyrazole Derivatives. RSC Adv. 2013, 3, 16994. DOI: 10.1039/c3ra42493f.
  • Srivastava, M.; Rai, P.; Singh, J.; Singh, J. Efficient Iodine-Catalyzed One Pot Synthesis of Highly Functionalized Pyrazoles in Water. New J. Chem. 2014, 38, 302–307. DOI: 10.1039/C3NJ01149.
  • Rai, F. P.; Srivastava, M.; Singh, J.; Singh, J. Molecular Iodine: A Green and Inclusive Catalyst for the Synthesis of Highly Functionalized 1,3,5-Trisubstituted Pyrazoles in Aqueous Medium. RSC Adv. 2014, 4, 779–783. DOI: 10.1039/C3RA44315A.
  • Mahdavi, M.; Khoshbakht, M.; Saeedi, M.; Asadi, M.; Bayat, M.; Foroumadi, A.; Shafiee, A. Iodine-Mediated Synthesis of Novel Pyrazole Derivatives. Synthesis 2016, 48, 541–546. DOI: 10.1055/s-0035-1560553.
  • Kamal, A.; Sastry, K. N. V.; Chandrasekhar, D.; Mani, G. S.; Adiyala, P. R.; Nanubolu, J. B.; Singarapu, K. K.; Maurya, R. A. One-Pot, Three-Component Approach to the Synthesis of 3,4,5-Trisubstituted Pyrazole. J. Org. Chem. 2015, 80, 4325–4335. DOI: 10.1021/jo502946g.
  • Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Copper-Mediated Pyrazole Synthesis from 2,3-Allenoates or 2-Alkynoates, Amines and Nitriles. Chem. Commun. (Camb) 2014, 50, 7677–7679. DOI: 10.1039/C4CC02856B.
  • Li, D. Y.; Mao, X. F.; Chen, H. J.; Chen, G. R.; Liu, P. N. Rhodium-Catalyzed Addition-Cyclization of Hydrazines with Alkynes: Pyrazole Synthesis via Unexpected C-N Bond Cleavage. Org. Lett. 2014, 16, 3476–3479. DOI: 10.1021/ol501402p.
  • Kumari, S.; Shekhar, A.; Pathak, D. D. Graphene Oxide–TiO2 Composite: An Efficient Heterogeneous Catalyst for the Green Synthesis of Pyrazoles and Pyridines. New J. Chem. 2016, 40, 5053–5060. DOI: 10.1039/C5NJ03380B.
  • Kashiwa, M.; Kuwata, Y.; Sonoda, M.; Tanimori, S. Oxone-Mediated Facile Access to Substituted Pyrazoles. Tetrahedron 2016, 72, 304–311. DOI: 10.1016/j.tet.2015.11.035.
  • Saeed, A.; Channar, P. A. A Green Mechanochemical Synthesis of New 3,5-Dimethyl-4-(Arylsulfanyl) Pyrazoles. J. Heterocycl. Chem. 2017, 54, 780–783. DOI: 10.1002/jhet.2528.
  • Yadav, S.; Rai, P.; Srivastava, M.; Singh, J.; Tiwari, K. P.; Singh, J. Atmospheric Oxygen Mediated Synthesis of Pyrazole under Visible Irradiation. Tetrahedron Lett. 2015, 56, 5831–5835. DOI: 10.1016/j.tetlet.2015.07.039.
  • Rakhtshah, J.; Salehzadeh, S.; Gowdini, E.; Maleki, F.; Baghery, S.; Zolfigol, M. A. Synthesis of Pyrazole Derivatives in the Presence of a Dioxomolybdenum Complex Supported on Silica-Coated Magnetite Nanoparticles as an Efficient and Easily Recyclable Catalyst. RSC Adv. 2016, 6, 104875–104885. DOI: 10.1039/C6RA20988B.
  • Meng, F. J.; Sun, T.; Dong, W. Z.; Li, M. H.; Tuo, Z. Z. Discovery of Novel Pyrazole Derivatives as Potent Neuraminidase Inhibitors against Influenza H1N1 Viru. Arch. Pharm. (Weinheim) 2016, 349, 168–174. DOI: 10.1002/ardp.201500342.
  • Dhanaji, V. J.; Umesh, R. P.; Jyotirling, R. M.; Ramrao, A. M. Silica Chloride Catalyzed One-Pot Synthesis of Fully Substituted Pyrazoles. Chin. Chem. Lett. 2011, 22, 1187. DOI: 10.1016/j.cclet.2011.05.016.
  • Kiyani, H.; Bamdad, M. One-Pot and Efficient Synthesis of 5-Aminopyrazole -4-Carbonitriles Catalyzed by Potassium Phthalimide. Heterocycles 2017, 94, 276. DOI: 10.3987/COM-16-13623.
  • Ubale, M.; Shioorkar, M. An Environmentally Benign Alum Catalyzed Approach for Synthesis of Polysubstituted Amino Pyrazole. Heterocycl. Lett. 2016, 6, 365.
  • Shen, L.; Cao, S.; Nianjin, L.; Wu, J.; Zhu, L.; Qian, X. Ytterbium(III) Perfluorooctanoate Catalyzed One-Pot, Three-Component Synthesis of Fully Substituted Pyrazoles under Solvent-Free Conditions. Synlett 2008, 2008, 1341–1344. DOI: 10.1055/s-2008-1067137.
  • Ma, C.; Wen, P.; Li, J.; Han, X.; Wu, Z.; Huang, G. Palladium and Copper Cocatalyzed Intermolecular Cyclization Reaction: Synthesis of 5-Aminopyrazole Derivatives; Adv. Adv. Synth. Catal. 2016, 358, 1073–1077. DOI: 10.1002/adsc.201500767.
  • Oliveira, D. H.; Aquino, T. B.; Nascimento, J. E. R.; Perin, G.; Jacob, R. G.; Alves, D. Direct Synthesis of 4-Organylselanylpyrazoles by Copper- Catalyzed One-Pot Cyclocondensation and C-H Bond Selenylation Reactions. Adv. Synth. Catal. 2015, 357, 4041–4049. DOI: 10.1002/adsc.201500625.
  • Pandit, R. P.; Lee, Y. R.; Cover, P. Construction of Multifunctionalized Azopyrazoles by Silver- Catalyzed Cascade Reaction of Diazo Compounds. Adv. Synth. Catal. 2015, 357, 2657–2664. DOI: 10.1002/adsc.201500601.
  • Kiyani, H.; Bamdad, M. Sodium Ascorbate as an Expedient Catalyst for Green Synthesis of Polysubstituted 5-Aminopyrazole-4-Carbonitriles and 6-Amino-1,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitriles. Res. Chem. Intermed. 2018, 44, 2761–2778. DOI: 10.1007/s11164-018-3260-0.
  • Dabholkar, V.; Kurade, S.; Badhe, K.; Karthik, K.; Anpat, S. Synthesis of Polysubstituted Amino Pyrazole via Multicomponenet Strategy Using NiFe2O4 Nanocatalyst. Der Pharma Chem. 2018, 10, 62–67.
  • Kumar, P.; Subramaniyan, S.; Yamini, K.; Suthakaran, R. Synthesis of Some Novel 1-h Pyrazole Derivatives and Their Antibacterial Activity Studies. Rasayan J. Chem. 2011, 4, 400–404.
  • Singh, N.; Pandey, J. DABCO Catalyzed, Green and Efficient, One-Pot Multicomponent Synthesis of 5-Aminopyrazole-4-Carbonitrile. Curr. Res. Green Sustain. Chem. 2021, 4, 100134. DOI: 10.1016/j.crgsc.2021.100134.
  • Nikpassand, M.; Mamaghani, M.; Tabatabaeian, K.; Kupaei Abiazi, M. KSF: An Efficient Catalyst for the Regioselective Synthesis of 1,5-Diaryl Pyrazoles Using Baylis–Hillman Adducts. Mol. Divers. 2009, 13, 389–393. DOI: 10.1007/s11030-009-9123-2.
  • Mishra, D.; Singh, R.; Rout, C. Synthesis of Highly Functionalized Pyrazoles Using AlCl3 as Catalyst. J. Chem. Pharmaceut. Res. 2017, 9, 16–19.
  • Abshirini, Z.; Lotfifar, N.; Zare, A. A Highly Effectual and Rapid Protocol for the Synthesis of 5-Amino-1,3-Diaryl-1H-Pyrazole-4-Carbonitriles Using 1,3-Disulfonic Acid Imidazolium Trifluoroacetate as a Dual-Functional Catalyst. Org. Prep. Proced. Int. 2020, 52, 428–433. DOI: 10.1080/00304948.2020.1780884.
  • Nemati, F.; Nikkhah, S. H.; Elhampour, A. An Environmental Friendly Approach for the Catalyst-Free Synthesis of Highly Substituted Pyrazoles Promoted by Ultrasonic Radiation. Chinese Chem. Lett. 2015, 26, 1397–1399. DOI: 10.1016/j.cclet.2015.07.009.
  • Patki, A. S.; Patil, K. N.; Kusuma, S.; Muley, D. B.; Jadhav, A. H. One-Pot Synthesis of Multicomponent Pyrazole-4-Carbonitrile Derivatives under Solvent-Free Condition by Using Engineered Polyvinyl Alcohol Catalyst. Res. Chem. Intermed. 2021, 47, 2751–2773. DOI: 10.1007/s11164-021-04450-6.
  • Mamaghani, M.; Tabatabaeian, K.; Mirzaeinejad, M.; Nikpassand, M. One-Pot Facile Conversion of Baylis-Hillman Adducts into 1,5-Diarylpyrazoles Using Microwave Irradiation. JICS 2006, 3, 89–92. DOI: 10.1007/BF03245796.
  • Chen, S.-W.; Zhang, Z.-C.; Ma, M.; Zhong, C.-M.; Lee, S.-G. Supported Ruthenium-Carbene Catalyst on Ionic Magnetic Nanoparticles for Olefin Metathesis. Org. Lett. 2014, 16, 4969–4971. DOI: 10.1021/ol5024008.
  • Baig, R. N.; Varma, R. S. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustain. Chem. Eng. 2013, 1, 805–809. DOI: 10.1021/sc400032k.
  • Rathi, A. K.; Zboril, R.; Varma, R. S.; Gawande, M. B. Magnetite (Ferrites)- Supported Nano Catalyst: Sustainable Application in Organic Transformation. Am. Chem. Soc. 2016, 1238, 39–78. DOI: 10.1021/br-2016-1238.ch002.
  • Roudsari, S. T.; Rad-Moghadam, K.; Hosseinjani-Pirdehi, H. Dual Complex of Amylose with Iodine and Magnetite Nano‐Crystallites: Enhanced Superparamagnetic and Catalytic Performance for Synthesis of Spiro‐Oxindoles. Appl. Organomet. Chem. 2019, 33, e4993. DOI: 10.1002/aoc.4993.
  • Ying, A.; Hou, H.; Liu, S.; Chen, G.; Yang, J.; Xu, S. Ionic Modified TBD Supported on Magnetic Nanoparticles: A Highly Efficient and Recoverable Catalyst for Organic Transformation, ACS Sustain. ACS Sustain. Chem. Eng. 2016, 4, 625–632. DOI: 10.1021/acssuschemeng.5b01757.
  • Meffre, A.; Mehdaoui, B.; Connord, V.; Carrey, J.; Fazzini, P. F.; Lachaize, S.; Respaud, M.; Chaudret, B. Complex Nano-Objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Lett. 2015, 15, 3241–3248. DOI: 10.1021/acs.nanolett.5b00446.
  • Sharma, R. K.; Yadav, M.; Gawande, M. B. Silica-Coated Magnetic Nano-Particles: Application in Catalysis. Am. Chem. Soc. 2016, 1238, 1–38. DOI: 10.1021/bk-2016-1238.ch001.
  • Gorji, A.; Akbarpour, T.; Khazaei, A. Synthesis of Hexahydroquinolines, 5-Amino-1,3-Diphenyl-1h-Pyrazole-4-Carbonitrile and 1-Aminoalkyl-2-Naphthols Derivatives Using an Engineered Copper-Based Nano-Magnetic Catalyst (Fe3O4@CQD@Si(OEt) (CH2)3NH@CC@Ad@Cu(OAc)2. Polycycl. Arom. Compds. 2023, 43, 5041–5073. DOI: 10.1080/10406638.2022.2097276.
  • Nikpassand, M.; Fekri, L. Z.; Varma, R. S.; Hassanzadi, L.; Pashaki, F. S. Green Synthesis of Novel 5-Amino-Bispyrazole-4-Carbonitriles Using a Recyclable Fe3O4@SiO2@Vanillin@Thioglycolic Acid Nano-Catalyst. RSC Adv. 2022, 12, 834–844. DOI: 10.1039/D1RA08001F.
  • Okamoto, Y.; Kurasawa, Y.; Takada, A.; Takagi, K. Synthesis and Degradation of 3-Amino-3-(2-Substituted Benzimidazol-1-yl)-2-(2-Phenyl-1,1-Diazanediylmethyl)-2-Propene- Nitrile: Hydroxyl Group-Promoted C-N Bond Fission. J. Heterocycl. Chem. 1985, 22, 1719–1721. DOI: 10.1002/jhet.5570220650.
  • Costanzo, A.; Bruni, F.; Guerrini, G.; Selleri, S.; Aiello, P. M.; Lamberti, C. Synthesis of Derivatives of Pyrazolo[1,5-a]Pyrrolo[1,2-c][1,3,6]-Benzotriazocine, a New Class of Compounds with Potential CNS Activity. J. Heterocycl. Chem. 1992, 29, 1499–1505. DOI: 10.1002/jhet.5570290621.
  • Takahashi, M.; Sugawara, N.; Yoshimura, K. Amidrazones and Related Compounds. V. The Formation of Pyrazole, 1H-1,2,4-Triazepine, and 4H,11H-[1,5]Diazocino-[2,3-e: 6,7-e′]di[1H-1,2,4]Triazepine Derivatives. Bull. Chem. Soc. Japan 1977, 50, 957–960. DOI: 10.1246/bcsj.50.957.
  • Giori, P.; Veronese, A. C.; Vicentini, C. B.; Guarneri, M. Synthesis of 4-Thiocarbamoyl-5-Aminopyrazoles. J. Heterocycl. Chem. 1985, 22, 1093–1096. DOI: 10.1002/jhet.5570220434.
  • Plem, S. C.; Müller, D. M.; Murguía, M. C. Key Intermediates: A Simple and Highly Selective Synthesis of 5-Amino-1-Aryl-1H-Pyrazole-4-Carbonitriles for Applications in the Crop Protection. ACES. 2015, 05, 239–261. DOI: 10.4236/aces.2015.53025.
  • Dooley, M. J.; Quinn, R. J.; Scammells, P. J. Synthesis of 5-Aminopyrazole-4-Carbonitriles. Aust. J. Chem. 1989, 42, 747–750. DOI: 10.1071/CH9890747.
  • Abdel-Megid, M.; Awas, M. A. A.; Seada, M.; El-Mahdy, K. M. Synthesis of Some New Dipyrazolyl Ketones and Pyrazolopyrimidine Derivatives. OCAIJ 2008, 4, 48–56.
  • Shi, Y. C.; Zhu, B. B.; Sui, C. X. 1-Acetyl-3-Ferrocenyl-5-Methyl-1H-Pyrazole and 1-Acetyl-5-Ferrocenyl-3-(2-Pyridyl)-1H-Pyrazole. Acta Crystallogr. C 2006, 62, m577–m580. DOI: 10.1107/S0108270106043599.
  • Cheng, C. C.; Robins, R. K. Potential Purine Antagonists. VI. Synthesis of 1-Alkyl- and 1-Aryl-4-Substituted Pyrazolo[3,4-d]Pyrimidines. J. Org. Chem. 1956, 21, 1240–1256. DOI: 10.1021/jo01117a010.
  • El Fahham, H. A. Synthesis of Some New Pyrazoloazole and Pyrazoloazine Derivatives. Egypt J. Pharm. Sci. 1992, 33, 561.
  • Schmidt, P.; Druey, J. Heilmittelchemische Untersuchungen in Der Heterocyclischen Reihe. Mitteilung. Pyrazolo[3,4-d]Pyrimidine. Helv. Chim. Acta 1956, 39, 986–991. DOI: 10.1002/hlca.19560390345.
  • Howe, R. K.; Bolluyt, S. C. Synthesis and Cyclizations of Semicarbazidonethylene Malonates and Related Compounds. J. Org. Chem. 1969, 34, 1713–1716. DOI: 10.1021/jo01258a040.
  • Dhawan, B.; Southwick, P. L. 4-aminopyrazolo[3,4-d]Pyrimidines. Org. Prep. Proced. Int. 1981, 13, 379–382. DOI: 10.1080/00304948109356146.
  • Middleton, W. J.; Engelhardt, V. A. Cyanocarbon Chemistry. IX. Heterocyclic Compounds from Dicyanoketene Acetals. J. Am. Chem. Soc. 1958, 80, 2829–2832. DOI: 10.1021/ja01544a059.
  • Cairns, T. L.; Carboni, R. A.; Coffman, D. D.; Engelhardt, V. A.; Heckert, R. E.; Little, E. L.; McGeer, E. G.; McKusick, B. C.; Middleton, W. J.; Scribner, R. M.; et al. Cyanocarbon Chemistry. I. Preparation and Reactions of Tetracyanoethylene. J. Am. Chem. Soc. 1958, 80, 2775–2778. DOI: 10.1021/ja01544a051.
  • Tominaga, Y.; Honkawa, Y.; Hara, M.; Hosomi, A. Synthesis of Pyrazolo[3,4‐d] Pyrimidine Derivatives Using Ketene Dithioacetals. J. Heterocycl. Chem. 1990, 27, 775–783. DOI: 10.1002/jhet.5570270355.
  • Zaharan, M. A.; El-Sharief, A. M.; El-Gaby, M. S.; Ammar, Y. A.; El-Said, U. H. Some Reactions with Ketene Dithioacetals: Part I: Synthesis of Antimicrobial Pyrazolo[1,5-a]Pyrimidines via the Reaction of Ketene Dithioacetals and 5-Aminopyrazoles; Il Farmaco. Farmaco 2001, 56, 277–283. DOI: 10.1016/S0014-827X(01)01042-4.
  • Tominaga, Y.; Hara, M.; Honkaw, H.; Hosomi, A. Synthesis of Aminopyrazolo [3,4‐d]Pyrimidine Derivatives Using N‐Bis(Methylthio)Methylene‐p‐Toluenesulfonamide. J. Heterocycl. Chem. 1990, 27, 1245–1248. DOI: 10.1002/jhet.5570270515.
  • Fathalla, O. A.; Zaki, M. E. A. Studies on Activated Nitriles: Synthesis of New 3‐Cyano‐(p‐Antipyrylamino)Pyrazolo[1,5‐a] Pyrimidines and Pyrazolo[1,5‐a]Triazines. Indian J. Chem. 1998, 37B, 484.
  • Tominaga, Y. Synthesis of Heterocyclic Compounds Using Carbon Disulfide and Their Products. J. Heterocycl. Chem. 1989, 26, 1167–1204. DOI: 10.1002/jhet.5570260501.
  • Tominaga, Y.; Matsuoka, Y.; Kohra, S.; Hosomi, A. A Novel Preparation of Polarized Ethylenes by the Reaction of Thioamides or Dithiocarboxylates with Tetracyanoethylene Oxide. Synthesis of Pyrazoles and Pyrimides. Heterocycles 1987, 26, 613. DOI: 10.3987/R-1987-03-0613.
  • Tominaga, Y.; Matsuoka, Y.; Oniyama, Y.; Uchimura, Y.; Komiya, H.; Hirayama, M.; Kohra, S.; Hosomi, A. Polarized Ethylenes. IV. Synthesis of Polarized Ethylenes Using Thioamides and Methyl Dithiocarboxylates and Their Application to Syntheses of Pyrazoles, Pyrimidines, Pyrazolo[3,4-d] Pyrimidines, and 5-Aza[2.2.3]Cyclazines. J. Heterocycl. Chem. 1990, 27, 647–660. DOI: 10.1002/jhet.5570270332.
  • Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The Therapeutic Voyage of Pyrazole and Its Analogs: A Review. Eur. J. Med. Chem. 2016, 120, 170–201. DOI: 10.1016/j.ejmech.2016.04.077.
  • Jähnisch, K.; Schwertner, S. X. Reaktionen Von β-Fur-2-yl-β-Chlor-α-Cyanacrylsäurederivaten Mit Hydrazinen. J. Prakt. Chem. 1989, 331, 552–558. DOI: 10.1002/prac.19893310404.
  • Alshareef, H. F.; Mohamed, H. A.; Salaheldin, A. M. Synthesis and Biological Evaluation of New Tacrine Analogues under Microwave Irradiation. Chem. Pharm. Bull. (Tokyo) 2017, 65, 732–738. DOI: 10.1248/cpb.c17-00113.
  • Pätzel, M.; Ushmajev, A.; Liebscher, J.; Granik, V.; Grisik, S.; Polievktov, M. Cyclization of N‐Cyanovinyl‐Lactam Imines to Condensed 4‐Aminopyridines or Substituted Aminopyrazole. J. Heterocycl. Chem. 1992, 29, 1067–1068. DOI: 10.1002/jhet.5570290505.
  • Kurasawa, Y.; Katoh, R.; Mori, F.; Fukuchi, M.; Okamoto, M.; Takada, A.; Kim, H. S.; Okamoto, Y. Reaction of 2‐(5‐Aminopyrazol‐1‐yl) Quinoxaline 4‐Oxides with Dimethyl Acetylenedicarboxylate. J. Heterocycl. Chem. 1992, 29, 1009–1011. DOI: 10.1002/jhet.5570290458.
  • Nassar, E.; El-Badry, Y. A.; Eltoukhy, A. M. M.; Ayyad, R. R. Synthesis and Antiproliferative Activity of 1-(4-(1H-Indol-3-yl)-6-(4-Methoxyphenyl)Pyrimidin-2-yl)Hydrazine and Its Pyrazolo Pyrimidine Derivatives. Med. Chem. (Los Angeles) 2016, 06, 4. DOI: 10.4172/2161-0444.1000350.
  • Kreutzmann, J. Pharmazie 1982, 37, 526.
  • Abdelhamid, A. O.; Negm, A. M.; Abbas, I. M. New Syntheses of Pyrazolo[3,4‐d]Pyrimidine, Pyrazolo[3,4‐d]Pyridazine, Isoindolinedione and Pyrazole Derivatives. J. Prakt. Chem. 1989, 331, 31–36. DOI: 10.1002/prac.19893310106.
  • Taylor, E. C.; Hartke, K. S. The Reaction of Malononitrile with Hydrazine. J. Am. Chem. Soc. 1959, 81, 2452–2455. DOI: 10.1021/ja01519a044.
  • Carboni, R. A.; Coffman, D. D.; Howard, E. G. Cyanocarbon Chemistry. Malononitrile Dimer. J. Am. Chem. Soc. 1958, 80, 2838–2840. DOI: 10.1021/ja01544a061.
  • Ried, W.; Aboul-Fetouh, S. Synthesis of New Substituted Pyrazolo[1,5-a]Pyrimidines and Pyrazolo [1, 5-a]1, 3, 5-Triazines. Tetrahedron 1988, 44, 7155–7162. DOI: 10.1016/S0040-4020(01)86083-X.
  • Dickinson, C. L.; Williams, J. K.; McKusick, B. C. Aminocyanopyrazoles. J. Org. Chem. 1964, 29, 1915–1919. DOI: 10.1021/jo01030a061.
  • Earl, R. A.; Pugmire, R. J.; Revankar, G. R.; Townsend, L. B. Chemical and Carbon-13 Nuclear Magnetic Resonance Reinvestigation of the N-Methyl Isomers Obtained by Direct Methylation of 5-Amino-3,4-Dicyanopyrazole and the Synthesis of Certain Pyrazolo[3,4-d]Pyrimidines. J. Org. Chem. 1975, 40, 1822–1828. DOI: 10.1021/jo00900a030.
  • Taylor, E. C.; Abul-Husn, A. 3-Cyano-4-Aminopyrazolo[3,4-d]Pyrimidine. An Azalog of the Aglycone of Toyocamycin. J. Org. Chem. 1966, 31, 342–343. DOI: 10.1021/jo01339a516.
  • Abdelhamid, A. O.; Negm, A. M.; Abbas, I. M. New Syntheses of Pyrazolo [3,4-d]Pyrimidine, Pyrazolo[3,4-d]Pyridazine, Benzpyrrole and Pyrazole Derivatives. Egypt J. Pharm. Sci. 1989, 30, 103.
  • Fahmi, A. A.; Mekki, S. T.; Albar, H. A.; Shawali, A. S.; Hassaneen, H. M.; Abdelhamid, H. J. Chem. Res. 1994, 6.
  • Tanaka, K.; Suzuki, T.; Maeno, S.; Tsuhashi, K. M. An Unusual Cyclization of Trifluoroacetohydroximoyl and-Hydrazonoyl Bromides with Malononitrile. BCSJ. 1987, 60, 4480–4482. DOI: 10.1246/bcsj.60.4480.
  • Abdehamid, A. O.; PÁrkÁnyi, C.; Shawali, A. S.; Abdalla, M. A. New Heterocyclic Syntheses from Hydrazidoyl Halides. Convenient Syntheses of Fused Pyrimidines, Pyridazines, and Quinazolines. J. Heterocycl. Chem. 1984, 21, 1049–1054. DOI: 10.1002/jhet.5570210425.
  • Elnagdi, M. H. Reactions with β-Cyanoethylhydrazine-I: A Route for the Preparation of Pyrazolo[1.5-a]Pyrimidines and Pyrrolo[1,2-b]Pyrrazole. Tetrahedron 1974, 30, 2791–2796. DOI: 10.1016/S0040-4020(01)97447-2.
  • Akbari, A.; Mirjalili, B. F. Nano-TiO2: An Efficient and Reusable Catalyst for the Synthesis of 1, 3, 5-Substituted Pyrazoles. Rev. Roum. Chim. 2016, 61, 119.
  • Ebenezer, O.; Shapi, M.; Tuszynski, J. A. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicine 2022, 10, 1124. DOI: 10.3390/biomedicines10051124.
  • Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-Pyrazoles in Medicinal Chemistry: A Review. Int. J. Mol. Sci. 2023, 24, 7834. DOI: 10.3390/ijms24097834.
  • Wu, Z.; Wu, S.; Ye, Y.; Zhou, X.; Wang, P.; Xue, W.; Hu, D. Synthesis and Bioactivities of Novel 1-(3-Chloropyridin-2-yl)-N-Substituted-5-(Trifluoromethyl)-Pyrazole Carboxamide Derivatives. J. Heterocycl. Chem. 2017, 54, 325–330. DOI: 10.1002/jhet.2587.
  • Bekhit, A. A.; Hassan, A. M. M.; Abd El Razik, H. A.; El-Miligy, M. M. M.; El- Agroudy, E. J.; Bekhit, A. E. A. New Heterocyclic Hybrids of Pyrazole and Its Bioisosteres: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents. Eur. J. Med. Chem. 2015, 94, 30–44. DOI: 10.1016/j.ejmech.2015.02.038.
  • Lim, F. P. L.; Luna, G.; Dolzhenko, A. V. A New, One-Pot, Multicomponent Synthesis of Bioactive N-Pyrazolylformamidines under Microwave Irradiation. Synthesis 2016, 48, 2423–2428. DOI: 10.1055/s-0035-1561616.
  • Hill, M. D. A Multicomponent Approach to Highly Substituted 1H-Pyrazolo [3,4-b]Pyridines. Synthesis 2016, 48, 2201–2204. DOI: 10.1055/s-0035-1562230.
  • Raju, H.; Chandrappa, S.; Prasanna, D. S.; Ananda, H.; Nagamani, T. S.; Byregowda, S. M.; Rangappa, K. S. Synthesis, Characterization and in Vitro Antiproliferative Effects of Novel 5-Amino Pyrazole Derivatives against Breast Cancer Cell Lines; Recent Pat. Recent Pat. Anticancer. Drug Discov. 2011, 6, 186–195. DOI: 10.2174/157489211795328459.
  • Chauhan, S.; Paliwal, S.; Chauhan, R. Anticancer Activity of Pyrazole via Different Biological Mechanisms. Synth. Commun. 2014, 44, 1333–1374. DOI: 10.1080/00397911.2013.837186.
  • Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of Pyrazole Derivatives Possessing Anticancer Activity: Current Status. Synth. Commun. 2014, 44, 1521–1578. DOI: 10.1080/00397911.2013.828757.
  • Bekhit, A. A.; Abdel-Aziem, T. Design, Synthesis and Biological Evaluation of Some Pyrazole Derivatives as Anti-Inflammatory-Antimicrobial Agents. Bioorg. Med. Chem. 2004, 12, 1935–1945. DOI: 10.1016/j.bmc.2004.01.037.
  • Ragab, F. A.; Abdel Gawad, N. M.; Georgey, H. H.; Said, M. F. Synthesis of Novel 1, 3, 4- Trisubstituted Pyrazoles as anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2013, 63, 645–654. DOI: 10.1016/j.ejmech.2013.03.005.
  • Mohamed, K. S.; Fadda, A. Synthesis, Characterization and Cytotoxicity Evaluation of Some Novel Pyrazole and Pyrrole Derivatives Containing Benzothiazole Moiety. Heterocycles 2015, 91, 1937–1954. DOI: 10.3987/COM-15-13304.
  • Keri, R. S.; Chand, K.; Ramakrishnappa, T.; Nagaraja, B. M. Recent Progress on Pyrazole Scaffold-Based Antimycobacterial Agents. Arch. Pharm. Chem. Life Sci. 2015, 348, 299–314. DOI: 10.1002/ardp.201400452.
  • Maruoka, H.; Hokao, M.; Kashige, N.; Masumoto, E.; Okabe, F.; Tanaka, R.; Miake, F.; Fujioka, T.; Yamagata, K. Chemical Reactivity and Application of 4-alkylidene3h-Pyrazol-3-Ones: synthesis and Antifungal Activity of Polysubstituted. Heterocycles 2016, 93, 362–377. DOI: 10.3987/COM-15-S(T)13.
  • Küçükgüzel, ŞG.; Şenkardeş, S. Recent Advances in Bioactive Pyrazoles. Eur. J. Med. Chem. 2015, 97, 786–815. DOI: 10.1016/j.ejmech.2014.11.059.
  • Liu, T.; Cui, R.; Chen, J.; Zhang, J.; He, Q.; Yang, B.; Hu, Y. 4,5-Diaryl-3-Aminopyrazole Derivatives as Analogs of Combretastatin A-4: Synthesis and Biological Evaluation. Arch. Pharm. (Weinheim) 2011, 344, 279–286. DOI: 10.1002/ardp.201000069.
  • Lusardi, M.; Rotolo, C.; Ponassi, M.; Iervasi, E.; Rosano, C.; Spallarossa, A. One-Pot Synthesis and Antiproliferative Activity of Highly Functionalized Pyrazole Derivatives. Chem. Med. Chem. 2022, 17, e202100670. DOI: 10.1002/cmdc.202100670.
  • Hebishy, A. M. S.; Salama, H. T.; Elgemeie, G. H. New Route to the Synthesis of Benzamide-Based 5-Aminopyrazoles and Their Fused Heterocycles Showing Remarkable Antiavian Influenza Virus Activity. ACS Omega 2020, 5, 25104–25112. DOI: 10.1021/acsomega.0c02675.
  • Bawazir, W. A Mini-Review 5-Amino-N-Substituted Pyrazoles as Building Blocks for Bioactive Molecules. IJOC 2020, 10, 63–76. DOI: 10.4236/ijoc.2020.102004.
  • Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszeswska, B. K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in Cancer Therapy and Prevention–Review. Curr. Drug Targets 2019, 20, 302–315. DOI: 10.2174/1389450119666180803121737.
  • Hassan, A. Y.; Saleh, N. M.; Kadh, M. S.; Abou-Amra, E. S. New Fused Pyrazolopyrimidine Derivatives; Heterocyclic Styling, Synthesis, Molecular Docking and Anticancer Evaluation. J. Heterocycl. Chem. 2020, 57, 2704–2721. DOI: 10.1002/jhet.3979.
  • Al-Adiwish, W. M.; Tahir, M. I. M.; Siti-Noor-Adnalizawati, A.; Hashim, S. F.; Ibrahim, N.; Yaacob, W. A. Synthesis, Antibacterial Activity and Cytotoxicity of New Fused Pyrazolo[1,5-a] Pyrimidine and Pyrazolo[5,1-c][1,2,4]Triazine Derivatives from New 5-Aminopyrazoles. Eur. J. Med. Chem. 2013, 64, 464–476. DOI: 10.1016/j.ejmech.2013.04.029.
  • Abdellatif, K. R. A.; Abdelall, E. K. A.; Lamie, P. F.; Labib, M. B.; El-Nahaas, E.-S.; Abdelhakeem, M. M. New Pyrazole Derivatives Possessing Amino/Methanesulphonyl Pharmacophore with Good Gastric Safety Profile: Design, Synthesis, Cyclooxygenase Inhibition, anti-Inflammatory Activity and Histopathological Studies. Bioorg. Chem. 2019, 95, 103540–103552. DOI: 10.1016/j.bioorg.2019.103540.
  • El-Mahdy, K. M.; El-Kazak, A. M.; Abdel-Megid, M.; Seada, M.; Farouk, O. Synthesis, Characterization and Antimicrobial Activities of Some New Heterocyclic Schiff Bases Derived from Thiocarbohydrazide. Acta Chim. Slov. 2016, 63, 18–25. DOI: 10.17344/acsi.2015.1555.
  • Liu, X.-R.; Wu, H.; He, Z.-Y.; Ma, Z.-Q.; Feng, J.-T.; Zhang, X. Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives. Molecules 2014, 19, 14036–14051. DOI: 10.3390/molecules190914036.
  • L.; Terra, D. d J.; Viegas, A. M. R.; Bernardino, J. V.; Faria, P. F.; Vegi, d P.; Pinto, D. M. R.; Gabriel, M. S.; dos Santos, H. C.; Castro,  ; Abreu; A.; Paula. Synthesis of 5-Amino-1-Aryl-3-Methyl-1H-Pyrazole-4-Carbonitriles, Antifungal Activity and in Silico Analysis. Lett. Org. Chem. 2020, 17, 779–787. DOI: 10.2174/1570178617666200210105246.
  • Sharma, V.; Bhatia, P.; Alam, O.; Naim, M. J.; Nawaz, F.; Sheik, A. A.; Jha, M. Recent Advancement in the Discovery and Development of COX-2 Inhibitors: Insight into Biological Activities and SAR Studies (2008–2019). Bioorg. Chem. 2019, 89, 103007–103051. DOI: 10.1016/j.bioorg.2019.103007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.