Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 7
119
Views
0
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Microwave-assisted synthesis of indolizine derivatives: Recent developments: A review (2003-present)

&
Pages 505-525 | Received 03 Oct 2023, Published online: 25 Dec 2023

References

  • da Silva, T. S.; da Silva Souza, M.; Andricopulo, A. D.; Coelho, F. Discovery of Indolizine Lactones as Anticancer Agents and Their Optimization through Late-Stage Functionalization. RSC Adv. 2023, 13, 20264–20270. DOI: 10.1039/d3rÅ3395c.
  • Olejníková, P.; Birošová, L.; Švorc, Ľ.; Vihonská, Z.; Fiedlerová, M.; Marchalín, Š.; Šafář, P. Newly Synthesized Indolizine Derivatives—Antimicrobial and Antimutagenic Properties. Chemical Papers 2015, 69, 983–992. DOI: 10.1515/chempap-2015-0093.
  • Venugopala, K. N.; Tratrat, C.; Pillay, M.; Mahomoodally, F. M.; Bhandary, S.; Chopra, D.; Morsy, M. A.; Haroun, M.; Aldhubiab, B. E.; Attimarad, M.; et al. Anti-Tubercular Activity of Substituted 7-Methyl and 7-Formylindolizines and in Silico Study for Prospective Molecular Target Identification. Antibiotics 2019, 8, 247–262. DOI: 10.3390/antibiotics8040247.
  • Abuhaie, C. M.; Bîcu, E.; Rigo, B.; Gautret, P.; Belei, D.; Farce, A.; Dubois, J.; Ghinet, A. Synthesis and Anticancer Activity of Analogues of Phenstatin, with a Phenothiazine A-Ring, as a New Class of Microtubule-Targeting Agents. Bioorg. Med. Chem. Lett. 2013, 23, 147–152. DOI: 10.1016/j.bmcl.2012.10.135.
  • La Pietra, V.; La Regina, G.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Plotkin, B.; Eldar-Finkelman, H.; Brancale, A.; Ballatore, C.; Crowe, A.; et al. Design, Synthesis, and Biological Evaluation of 1-Phenylpyrazolo[3,4-e]Pyrrolo[3,4-g]Indolizine-4,6(1H,5H)-Diones as New Glycogen Synthase Kinase-3β Inhibitors. J. Med. Chem. 2013, 56, 10066–10078. DOI: 10.1021/jm401466v.
  • Novel indolizine-2-carboxamides active against the hepatitis b virus (HBV). Patent C07D471/04.
  • Olejníková, P.; Birošová, L.; Švorc, L. Antimicrobial and Antimutagenic Properties of Newly Synthesized Derivatives of Indolizine. Sci. Pharm. 2009, 77, 216–216. DOI: 10.3797/scipharm.oephg.21.PO-17.
  • Sandeep, C.; Venugopala, K. N.; Gleiser, R. M.; Chetram, A.; Padmashali, B.; Kulkarni, R. S.; Venugopala, R.; Odhav, B. Greener Synthesis of Indolizine Analogues using Water as a Base and Solvent: Study for Larvicidal Activity Against Anopheles arabiensis. Chem. Biol. Drug Des. 2016, 88, 899–904. DOI: 10.1111/cbdd.12823.
  • Singh, G. S.; Mmatli, E. E. Recent Progress in Synthesis and Bioactivity Studies of Indolizines. Eur. J. Med. Chem. 2011, 46, 5237–5257. DOI: 10.1016/j.ejmech.2011.08.042.
  • Antonini, I.; Claudi, F.; Gulini, U.; Micossi, L.; Venturi, F. Indolizine Derivatives with Biological Activity IV: 3-(2-Aminoethyl)-2-Methylindolizine, 3-(2-Aminoethyl)-2-Methyl-5,6,7,8-Tetrahydroindolizine, and Their N-Alkyl Derivatives. J. Pharm. Sci. 1979, 68, 321–324. DOI: 10.1002/jps.2600680317.
  • de Souza, C. R.; Gonçalves, A. C.; Amaral, M. F. Z. J.; Dos Santos, A. A.; Clososki, G. C. Recent Synthetic Developments and Reactivity of Aromatic Indolizines. Targets Heterocycl. Syst. 2016, 20, 365–392. DOI: 10.17374/targets.2017.20.365.
  • Sadowski, B.; Klajn, J.; Gryko, D. T. Recent Advances in the Synthesis of Indolizines and Their π-Expanded Analogues. Org. Biomol. Chem. 2016, 14, 7804–7828. DOI: 10.1039/C6OB00985A.
  • Helan, V.; Gulevich, A.; Gevorgyan, V. Cu-Catalyzed Transannulation Reaction of Pyridotriazoles with Terminal Alkynes under Aerobic Conditions: Efficient Synthesis of Indolizines. Chem. Sci. 2015, 6, 1928–1931. DOI: 10.1039/C4SC03358B.
  • Li, K.; Li, C. Enantioselective Synthesis of 3-Allylindolizines via Sequential Rh-Catalyzed Asymmetric Allylation and Tschitschibabin Reaction. Org. Lett. 2020, 22, 9456–9461. DOI: 10.1021/acs.orglett.0c03383.
  • Sharma, U. K.; Van der Eycken, E. V. Microwave-Assisted Organic Synthesis: Overview of Recent Applications. In Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd ed., John Wiley & Sons, Ltd. 2018.
  • Nagaraj, M.; Boominathan, M.; Muthusubramanian, S.; Bhuvanesh, N. Microwave-Assisted Metal-Free Synthesis of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]Pyridine via Amine-Triggered Benzannulation. Synlett 2012, 23, 1353–1357. DOI: 10.1055/s-0031-1290979.
  • Cunha, S. M. D.; de Oliveira, R. G.; Vasconcellos, M. L. A. A. Microwave-Assisted Convenient Syntheses of 2-Indolizine Derivatives from Morita-Baylis-Hillman Adducts: new in Silico Potential Ion Channel Modulators. J. Braz. Chem. Soc. 2013, 24, 432–438. DOI: 10.5935/0103-5053.20130056.
  • Wang, J. J.; Feng, X.; Xun, Z.; Shi, D. Q.; Huang, Z. B. Multicomponent Strategy to Pyrazolo[3,4-e]Indolizine Derivatives under Microwave Irradiation. J. Org. Chem. 2015, 80, 8435–8442. DOI: 10.1021/acs.joc.5b01314.
  • Chandrashekharappa, S.; Venugopala, K. N.; Nayak, S. K.; Gleiser, R. M.; García, D. A.; Kumalo, H. M.; Kulkarni, R. S.; Mahomoodally, F. M.; Venugopala, R.; Mohan, M. K.; Odhav, B. One-Pot Microwave Assisted Synthesis and Structural Elucidation of Novel Ethyl 3-Substituted-7-Methylindolizine-1-Carboxylates with Larvicidal Activity against Anopheles arabiensis. J. Mol. Struct. 2018, 1156, 377–384. DOI: 10.1016/j.molstruc.2017.11.131.
  • Gogoi, S.; Dutta, M.; Gogoi, J.; Boruah, R. C. Microwave Promoted Synthesis of Cycl[3.2.2]Azines in Water via a New Three-Component Reaction. Tetrahedron Lett. 2011, 52, 813–816. DOI: 10.1016/j.tetlet.2010.12.036.
  • Sokolova, E. A.; Festa, A. A.; Subramani, K.; Rybakov, V. B.; Varlamov, A. V.; Voskressensky, L. G.; Van der Eycken, E. V. Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]Indolizines from Alkylpyridinium Salts and Enaminones. Molecules 2020, 25, 4059. DOI: 10.3390/molecules25184059.
  • Sokolova, E. A.; Festa, A. A.; Golantsov, N. E.; Lukonina, N. S.; Ioffe, IN.; Varlamov, A. V.; Voskressensky, L. G. Highly Fluorescent Pyrido[2,3‐b] Indolizine‐10‐Carbonitriles through Pseudo Three‐Component Reactions of N‐(Cyanomethyl)Pyridinium Salts. Eur. J. Org. Chem. 2019, 2019, 6770–6775. DOI: 10.1002/ejoc.201900995.
  • Sumanth, G.; Saini, S. M.; Lakshmikanth, K.; Mangubhai, G. S.; Shivaprasad, K.; Chandrashekhara, S. Microwave-Assisted Improved Regioselective Synthesis of 3-Benzoyl Indolizine Derivatives. J. Mol. Struct. 2023, 1286, 135561. DOI: 10.1016/j.molstruc.2023.135561.
  • Yuan, Y. C.; Liu, T. Z.; Zhao, B. X. Metal-Free Catalyzed Synthesis of Fluorescent Indolizine Derivatives. J. Org. Chem. 2021, 86, 12737–12744. DOI: 10.1021/acs.joc.1c01292.
  • Ganto, M. M.; Lee, Y.-C.; Kaye, P. T. Applications of Thermal and Microwave-Assisted Cyclization in the Synthesis of Baylis–Hillman-Derived Heteropolycyclic Systems. Synth. Commun. 2011, 41, 1688–1702. DOI: 10.1080/00397911.2010.492075.
  • Nam, S.; Lee, Y.; Park, S.-H. X.; Namkung, W.; Kim, I. Synthesis and Biological Evaluation of a Fused Structure of Indolizine and Pyrrolo[1,2-c]Pyrimidine: Identification of Its Potent Anticancer Activity against Liver Cancer Cells. Pharmaceuticals 2022, 15, 1395. DOI: 10.3390/ph15111395.
  • Sun, S.; Wei, Y.; Xu, J. Microwave-Mediated Stereocontrolled Annulations of Diazo(Aryl)Methyl(Diaryl)Phosphine Oxides with Pyridinium 1,4-Zwitterionic Thiolates. Chem. Commun. (Camb) 2023, 59, 239–242. DOI: 10.1039/d2cc05483c.
  • Bayazit, M. K.; Celebi, N.; Coleman, K. S. A Theoretical and Experimental Exploration of the Mechanism of Microwave Assisted 1,3-Dipolar Cycloaddition of Pyridinium Ylides to Single Walled Carbon Nanotubes. Mater. Chem. Phys. 2014, 145, 99–107. DOI: 10.1016/j.matchemphys.2014.01.045.
  • Bora, U.; Saikia, A.; Boruah, R. C. A Novel Microwave-Mediated One-Pot Synthesis of Indolizines via a Three-Component Reaction. Org. Lett. 2003, 5, 435–438. DOI: 10.1021/ol020238n.
  • Prajapati, R. V.; Prajapati, V. D.; Purohit, V. B.; Avalani, J. R.; Kamani, R. D.; Sapariya, N. H.; Karad, S. C.; Raval, D. K. Microwave-Assisted Palladium-catalyzed double C−H Activation: One-pot Synthesis of Benzo[a]imidazo[5,1,2-cd]indolizines from 2-Phenylimidazo[1,2-a]pyridines and 1,2-Diiodobenzene. Chem. Select 2022, 7, 1–8. DOI: 10.1002/slct.202201436.
  • Chan, C.-H.; Ab Manap, N. I.; Nek Mat Din, N. S. M.; Hazmi, A. S. A.; Kow, K. W. Y.; Ho, K. Strategy to Scale up Microwave Synthesis with Insight into the Thermal and Non-Thermal Effects from Energy-Based Perspective. Chem. Eng. Process 2021, 168, 108594. DOI: 10.1016/j.cep.2021.108594.
  • Bowman, M. D.; Holcomb, J. L.; Kormos, C. M.; Leadbeater, N. E.; Williams, V. A. Approaches for Scale-Up of Microwave-Promoted Reactions. Org. Process Res. Dev. 2008, 12, 41–57. DOI: 10.1021/op700187w.
  • Priecel, P.; Lopez-Sanchez, J. A. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals. ACS Sustain. Chem. Eng. 2019, 7, 3–21. DOI: 10.1021/acssuschemeng.8b03286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.