Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 7
111
Views
0
CrossRef citations to date
0
Altmetric
Articles

Asymmetric synthesis, characterization of chiral trans and cis-3-chloro/oxo/thio-4-styryl-β-lactams using (R)-(+)-1-phenylethylamine and their efficient column chromatographic separation

, , & ORCID Icon
Pages 553-566 | Received 29 Dec 2023, Published online: 27 Feb 2024

References

  • Larcher, R.; Laffont-Lozes, P.; Roger, C.; Doncesco, R.; Groul-Viaud, C.; Martin, A.; Loubet, P.; Lavigne, J. P.; Pantel, A.; Sotto, A. Last Resort β-Lactam Antibiotics for Treatment of New-Delhi Metallo-Beta-Lactamase Producing Enterobacterales and Other Difficult-to-Treat Resistance in Gram-Negative Bacteria: A Real-Life Study. Front. Cell. Infect. Microbiol. 2022, 12, 1048633–1048649. DOI: 10.3389/fcimb.2022.1048633.
  • Ottenbrite, R. M.; Kim, S. W. Polymeric Drugs and Drug Delivery Systems; CRC Press: Boca Raton; 2019; pp. 328.
  • a) Ojima, I.; Delaloge, F. Asymmetric Synthesis of Building-blocks for Peptides and Peptidomimetics by Means of the β-Lactam Synthon Method. Chem. Soc. Rev. 1997, 26, 377–386. DOI: 10.1039/CS9972600377.; b) Palomo, C.; Oiarbide, M.; Esnal, A.; Landa, A.; Miranda, J. I.; Linden, A. Practical Synthesis of α-Amino Acid N-Carboxy Anhydrides of Polyhydroxylated α-Amino Acids from β-Lactam Frameworks. Model Studies toward the Synthesis of Directly Linked Peptidyl Nucleoside Antibiotics. J. Org. Chem. 1998, 63, 5838–5846. DOI: 10.1021/JO980354X.
  • Qi, J.; Wei, F.; Tung, C. H.; Xu, Z. Modular Synthesis of α-Quaternary Chiral β-Lactams by a Synergistic Copper/Palladium-Catalyzed Multicomponent Reaction. Angew. Chem. Int. Ed. Engl. 2021, 60, 13814–13818. DOI: 10.1002/anie.202100601.
  • Wang, J.; Shi, Y.; Wang, F.; Huang, F.; Bai, S.; Zhao, Y.; Zhang, X. Concise Synthesis of Chiral Tricyclic Lactams by Tandem Dynamic Kinetic Asymmetric Reductive Amination/Lactamization Using Ammonium Salts. Angew. Chem. Int. Ed 2023, 135, e202303868. DOI: 10.1002/ange.202303868.
  • Zheng, J. J.; Liu, W. L.; Gu, Q. S.; Li, Z. L.; Chen, J. J.; Liu, X. Y. Copper-Catalyzed Enantioconvergent Radical C (sp3)–N Cross-Coupling to Access Chiral α-Amino-β-Lactams. Precision Chemistry 2023, 1, 576–582. DOI: 10.1021/prechem.3c00084.
  • Kokate, C. K.; Purohit, A. P.; Gokhale, S. B. Pharmacognosy; 40th ed.; Nirali Prakashan, Pune; 2007; pp. 635.
  • Kwon, B. M.; Lee, S. H.; Choi, S. U.; Park, S. H.; Lee, C. O.; Cho, Y. K.; Sung, N. D.; Bok, S. H. Synthesis and in Vitro Cytotoxicity of Cinnamaldehydes to Human Solid Tumor Cells. Arch. Pharm. Res. 1998, 21, 147–152. DOI: 10.1007/bf02974019.
  • Zhou, F.; Ji, B.; Zhang, H.; Jiang, H. U.; Yang, Z.; Li, J.; Li, J.; Yan, W. The Antibacterial Effect of Cinnamaldehyde, Thymol, Carvacrol and Their Combinations against the Foodborne Pathogen Salmonella Typhimurium. J. Food. Safety 2007, 27, 124–133. DOI: 10.1111/j.1745-4565.2007.00064.x.
  • www.cinnamaldehyde.org/wiki.
  • Gunawardena, D.; Karunaweera, N.; Lee, S.; Van Der Kooy, F.; Harman, D. G.; Raju, R.; Bennett, L.; Gyengesi, E.; Sucher, N. J.; Münch, G. Anti-Inflammatory Activity of Cinnamon (C. zeylanicum and C. cassia) Extracts-Identification of E-Cinnamaldehyde and O-Methoxy Cinnamaldehyde as the Most Potent Bioactive Compounds. Food Funct. 2015, 6, 910–919. DOI: 10.1039/C4FO00680A.
  • Qi, J.; Wei, F.; Huang, S.; Tung, C. H.; Xu, Z. Copper (I)-Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of α-Thiofunctional Chiral β-Lactams. Angew. Chem 2021, 133, 4611–4615. DOI: 10.1002/ange.202013450.
  • Alves, N. G.; Bártolo, I.; Alves, A. J.; Fontinha, D.; Francisco, D.; Lopes, S. M.; Soares, M. I.; Simões, C. J.; Prudêncio, M.; Taveira, N.; e Melo, T. M. V. D. Synthesis and Structure-Activity Relationships of New Chiral Spiro-β-Lactams Highly Active against HIV-1 and Plasmodium. Eur. J. Med. Chem. 2021, 219, 113439–113455. DOI: 10.1016/j.ejmech.2021.113439.
  • Ji, D. S.; Liang, H.; Yang, K. X.; Feng, Z. T.; Luo, Y. C.; Xu, G. Q.; Gu, Y.; Xu, P. F. Solvent Directed Chemically Divergent Synthesis of β-Lactams and α-Amino Acid Derivatives with Chiral Isothiourea. Chem. Sci. 2022, 13, 1801–1807. DOI: 10.1039/D1SC06127E.
  • Shu, T.; Zhao, L.; Li, S.; Chen, X. Y.; Von, E. C.; Rissanen, K.; Enders, D. Asymmetric Synthesis of Spirocyclic β-Lactams through Copper-Catalyzed Kinugasa/Michael Domino Reactions. Angew. Chem. Int. Ed. Engl. 2018, 57, 10985–10988. DOI: 10.1002/anie.201806931.
  • Li, J.; Ma, H.; Zhong, X.; Li, S.; Zhang, J.; Ao, Y.; Zhou, W.; Cai, Q. Highly Diastereo-and Enantioselective Synthesis of Spiro β-Lactams via Copper-Catalyzed Kinugasa/Aldol Cascade Reaction. Org. Chem. Front. 2023, 10, 5383–5388. DOI: 10.1039/D3QO01362F.
  • McLoughlin, E. C.; Twamley, B.; O’Brien, J. E.; Barroeta, P. H.; Zisterer, D. M.; Meegan, M. J.; O’Boyle, N. M. Synthesis by Diastereomeric Resolution, Biochemical Evaluation and Molecular Modelling of Chiral 3-Hydroxyl-β-Lactam Microtubule-Targeting Agents for the Treatment of Triple Negative Breast and Chemoresistant Colorectal Cancers. Bioorg. Chem. 2023, 141, 106877–106902. DOI: 10.1016/j.bioorg.2023.106877.
  • a) Bhalla, A., Bari, S. S.; Bhalla, J.; Khullar, S.; Mandal, S. Facile Synthesis of Novel Halogenated 4-Pyrazolylspirocyclic-β-Lactams: Versatile Heterocyclic Synthons. Tetrahedron Lett. 2016, 57, 2822–2828. DOI: 10.1016/j.tetlet.2016.05.047.; (b) Bhalla, A.; Modi, G.; Bari, S. S.; Kumari, A.; Berry, S.; Hundal, G. Stereoselective Synthesis of Novel C-3 Functionalized 3-Sulfonyl-β-Lactams: Promising Biologically Active Heterocyclic Scaffolds. Tetrahedron Lett. 2017, 58, 1160–1165. DOI: 10.1016/j.tetlet.2017.02.011.; (c) Kumari, A.; Bari, S. S.; Modi, G.; Berry, S.; Khullar, S.; Mandal, S. K.; Bhalla, A. Comprehensive Study towards the Desulfonylation/Desulfinylation of Cis-3-Functionalized 3-Phenylsulfonyl/Sulfinyl-β-Lactams to Access Novel Cis-3-Monosubstituted-β-Lactams. Tetrahedron 2018, 74, 4400–4408. DOI: 10.1016/j.tet.2018.07.008.; (d) Bhalla, A.; Modi, G.; Yadav, P.; Kumar, P.; Bari, S. S.; Hundal, G. Stereoselective C-3 Alkylation of Trans-3-Phenylsulfonyl-β-Lactams with Organic Halides to Access C-3 Substituted β-Lactams Using Sulfonyl Moiety as an Activating Group. Tetrahedron Lett. 2020, 61, 152098–152101. DOI: 10.1016/j.tetlet.2020.152098.; (e) Narula, D.; Bari, S. S.; Yadav, P.; Khullar, S.; Mandal, S. K.; Kaur, G.; Chaudhary, G. R.; Bhalla, A. Synthesis of α-Heterocycle Anchored Spirocyclic Azetidin-2-Ones in a Minute by p-TSA Catalyzed Cyclocondensation of Azetidin-2, 3-Diones with Difunctionalized Substrates. ChemistrySelect 2021, 6, 3932–3940. DOI: 10.1002/slct.202101104.; (f) Saini, P.; Bari, S. S.; Yadav, P.; Khullar, S.; Mandal, S. K.; Bhalla, A. Synthesis of C2 Formamide (Thiophene) Pyrazolyl-C4’-Carbaldehyde and Their Transformation to Schiff’s Bases and Stereoselective Trans-β-Lactams: Mechanistic and Theoretical Insights. ChemistrySelect 2022, 7, e202202172. DOI: 10.1002/slct.202202172.; (g) Bhalla, A.; Modi, G.; Bari, S. S.; Kumari, A.; Narula, D.; Berry, S. An Investigation towards the Diastereoselective Synthesis of 3-Acetoxy/Methoxy/Phthalimido-β-Lactams Using Chiral Imines. Tetrahedron Asymmetry 2017, 28, 307–316. DOI: 10.1016/j.tetasy.2016.12.007.; (h) Vijeata, A.; Chaudhary, G. R.; Bhalla, A.; Chaudhary, S. 3-Methoxyazetidin-2-One Functionalized CuO-CB Microfibrils: A Drug Formulation with Controlled Release and Enhanced Synergistic Antibacterial Activities. ACS Appl. Bio Mater. 2023, 6, 1849–1862. DOI: 10.1021/acsabm.3c00064.; (i) Kumar, P.; Bhalla, A. Isothiocyanates (in Situ) and Sulfonyl Chlorides in Water for N-Functionalization of Bicyclic Amidines: Access to N-Alkylated γ-/ω-Lactam Derivatized Thiourea and Sulfonamides. Org. Biomol. Chem. 2023, 21, 8868–8874. DOI: 10.1039/D3OB01584J.
  • APEX2, SADABS and SAINT. Bruker AXS Inc: Madison, WI, USA; 2008.
  • a) Sheldrick, G. M. SHELXT-Integrated Space-Group and Crystal-Structure Determination.Acta Crystallogr A Found Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.; (b). Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Jiao, L.; Liang, Y.; Xu, J. Origin of the Relative Stereoselectivity of the β-Lactam Formation in the Staudinger Reaction. J. Am. Chem. Soc. 2006, 128, 6060–6069. DOI: 10.1021/ja05.
  • Fu, N.; Tidwell, T. T. Preparation of β-Lactams by Cycloaddition of Ketenes and Imines. Tetrahedron 2008, 64, 10465–10496. DOI: 10.1016/j.tet.2008.08.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.