Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 8
60
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polyethyleneimine-immobilized CoCl2 nanoparticles: Synthesis, characterization, application as a new efficient and reusable nanocomposite catalyst for one-step transesterification reaction

, &
Pages 672-693 | Received 14 Dec 2023, Published online: 20 Mar 2024

References

  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent Immobilization of Co Complex on the Surface of SBA-15: Green, Novel and Efficient Catalyst for the Oxidation of Sulfides and Synthesis of Polyhydroquinoline Derivatives in Green Condition. Polyhedron 2019, 158, 25–35. DOI: 10.1016/j.poly.2018.10.054.
  • Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite Nanoparticles as Versatile Support for Organic–Inorganic Hybrid Materials: Synthesis, Functionalization, and Applications in Eco-Friendly Catalysis. J. Ind. Eng. Chem. 2021, 97, 1–78. DOI: 10.1016/j.jiec.2021.02.001.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. Complexation of Guanidino Containing l-Arginine with Nickel on Silica-Modified Hercynite MNPs: A Novel Catalyst for the Hantzsch Synthesis of Polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-Ones. Res. Chem. Intermed. 2022, 48, 2641–2663. DOI: 10.1007/s11164-022-04706-9.
  • Mohammadi, M.; Ghorbani-Choghamarani, A.; Ramish, S. M. [ZrFe2O4@SiO2–N–(TMSP)–ASP–Pd(0)] Complex: Synthesis, Characterizations, and Its Application as a Nanomagnetic Catalyst in Cross-Coupling and Click Reactions. J. Mol. Struct. 2023, 1292, 136115. DOI: 10.1016/j.molstruc.2023.136115.
  • Azadi, S.; Sardarian, A. R.; Esmaeilpour, M. Nano Cr(III) Schiff-Base Complex Supported on Magnetic Fe3O4@SiO2: Efficient, Heterogeneous, and Recoverable Nanocatalyst for Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles. Monatsh. Chem. 2023, 154, 887–903. DOI: 10.1007/s00706-023-03100-4.
  • Mohammadi, M.; Ghorbani-Choghamarani, A.; Hussain–Khil, N. l–Aspartic Acid Chelan–Cu (II) Complex Coted on ZrFe2O4 MNPs Catalyzed One–Pot Annulation and Cooperative Geminal-Vinylogous Anomeric–Based Oxidation Reactions. J. Phys. Chem. Solids 2023, 177, 111300. DOI: 10.1016/j.jpcs.2023.111300.
  • Adhikari, C. Polymer Nanoparticles-Preparations, Applications and Future Insights: A Concise Review. Polym.-Plast. Technol. Mater. 2021, 60, 1–29. DOI: 10.1080/25740881.2021.1939715.
  • Hassan, T.; Salam, A.; Khan, A.; Khan, S. U.; Khanzada, H.; Wasim, M.; Khan, M. Q.; Kim, I. S. Functional Nanocomposites and Their Potential Applications: A Review. J. Polym. Res. 2021, 28, 36–57. DOI: 10.1007/s10965-021-02408-1.
  • Tajik, S.; Beitollahi, H.; Nejad, F. G.; Dourandish, Z.; Khalilzadeh, M. A.; Jang, H. W.; Venditti, R. A.; Varma, R. S.; Shokouhimehr, M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. DOI: 10.1021/acs.iecr.0c04952.
  • Esmaeili-Faraj, S. H.; Hassanzadeh, A.; Shakeriankhoo, F.; Hosseini, S.; Vaferi, B. Diesel Fuel Desulfurization by Alumina/Polymer Nanocomposite Membrane: Experimental Analysis and Modeling by the Response Surface Methodology. Chem. Eng. Process. Process Intensif. 2021, 164, 108396. DOI: 10.1016/j.cep.2021.108396.
  • Kehinde, B. A.; Chhikara, N.; Sharma, P.; Garg, M. K.; Panghal, A. Chapter 6 - Application of Polymer Nanocomposites in Food and Bioprocessing Industries. In Handbook of Polymer Nanocomposites for Industrial Applications, Hussain, C. M., Ed.; Elsevier : United States, 2021; pp 201–236.
  • Sahay, R.; Reddy, V. J.; Ramakrishna, S. Synthesis and Applications of Multifunctional Composite Nanomaterials. Int. J. Mech. Mater. Eng. 2014, 9, 25–37. DOI: 10.1186/s40712-014-0025-4.
  • Díez-Pascual, A. M.; Luceño Sánchez, J. A.; Peña Capilla, R.; García Díaz, P. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers. (Basel) 2018, 10, 217–238. DOI: 10.3390/polym10020217.
  • Wu, H.; Fahy, W. P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J. H. Recent Developments in Polymers/Polymer Nanocomposites for Additive Manufacturing. Prog. Mater. Sci. 2020, 111, 100638–100683. DOI: 10.1016/j.pmatsci.2020.100638.
  • Bharadwaz, A.; Jayasuriya, A. C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 100727–110698. DOI: 10.1016/j.msec.2020.110698.
  • Zuraev, A. V.; Grigoriev, Y. V.; Budevich, V. A.; Ivashkevich, O. A. Copper-Polymer Nanocomposite: An Efficient Catalyst for Green Huisgen Click Synthesis. Tetrahedron Lett. 2018, 59, 1583–1586. DOI: 10.1016/j.tetlet.2018.03.028.
  • Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent Advancements in Polyethyleneimine-Based Materials and Their Biomedical, Biotechnology, and Biomaterial Applications. J. Mater. Chem. B 2020, 8, 2951–2973. DOI: 10.1039/C9TB02271F.
  • Patil, S.; Lalani, R.; Bhatt, P.; Vhora, I.; Patel, V.; Patel, H.; Misra, A. Hydroxyethyl Substituted Linear Polyethylenimine for Safe and Efficient Delivery of siRNA Therapeutics. RSC Adv. 2018, 8, 35461–35473. DOI: 10.1039/C8RA06298F.
  • Prud’homme, A.; Nabki, F. Comparison between Linear and Branched Polyethylenimine and Reduced Graphene Oxide Coatings as a Capture Layer for Micro Resonant CO2 Gas Concentration Sensors. Sensors (Basel) 2020, 20, 1824–1844. DOI: 10.3390/s20071824.
  • Yadav, S.; Mahato, M.; Jha, D.; Ahmadi, Z.; Gautam, H. K.; Sharma, A. K. Enhanced Antibacterial Activity of Tetramethylguanidinium-Conjugated Linear Polyethylenimine Polymers. Int. J. Polym. Mater. 2018, 67, 889–895. DOI: 10.1080/00914037.2017.1393679.
  • Zhou, Z.; Murdoch, W. J.; Shen, Y. A Linear Polyethylenimine (LPEI) Drug Conjugate with Reversible Charge to Overcome Multidrug Resistance in Cancer Cells. Polymer 2015, 76, 150–158. DOI: 10.1016/j.polymer.2015.08.061.
  • Lázaro-Martínez, J. M.; Byrne, A. J.; Rodríguez-Castellón, E.; Manrique, J. M.; Jones, L. R.; Campo Dall’ Orto, V. Linear Polyethylenimine-Decorated Gold Nanoparticles: One-Step Electrodeposition and Studies of Interaction with Viral and Animal Proteins. Electrochim. Acta 2019, 301, 126–135. DOI: 10.1016/j.electacta.2019.01.154.
  • Zhao, Y.; Liu, L.; Li, C.; Ye, B.; Xiong, J.; Shi, X. Immobilization of Polyethyleneimine-Templated Silver Nanoparticles onto Filter Paper for Catalytic Applications. Colloids Surf. A 2019, 571, 44–49. DOI: 10.1016/j.colsurfa.2019.03.075.
  • Azadi, S.; Sardarian, A. R.; Esmaeilpour, M. Magnetically-Recoverable Schiff Base Complex of Pd(II) Immobilized on Fe3O4@SiO2 Nanoparticles: An Efficient Catalyst for the Reduction of Aromatic Nitro Compounds to Aniline Derivatives. Monatsh. Chem. 2021, 152, 809–821. DOI: 10.1007/s00706-021-02787-7.
  • Fatiha, Z.; Villemin, D.; Bar, N.; Didi, M.; Polyethyleneimine, (P. E. I.) On Silica as Catalyst in Knoevenagel and Michael Reactions. Sci. Study Res. Chem. Chem. Eng. Biotechnol. 2017, 18, 001–008.
  • Cui, Y.; Liang, B.; Zhang, J.; Wang, R.; Sun, H.; Wang, L.; Gao, D. Polyethyleneimine-Stabilized Palladium Nanoparticles for Reduction of 4-Nitrophenol. Transit. Met. Chem. 2019, 44, 655–662. DOI: 10.1007/s11243-019-00330-6.
  • Hasanpour, Z.; Maleki, A.; Hosseini, M.; Gorgannezhad, L.; Nejadshafiee, V.; Ramazani, A.; Haririan, I.; Shafiee, A.; Khoobi, M. Efficient Multicomponent Synthesis of 1,2,3-Triazoles Catalyzed by Cu(II) Supported on PEI@Fe3O4 MNPs in a Water/PEG 300 System. Turk. J. Chem. 2017, 41, 294–307. DOI: 10.3906/kim-1607-40.
  • Khoobi, M.; Khalilvand-Sedagheh, M.; Ramazani, A.; Asadgol, Z.; Forootanfar, H.; Faramarzi, M. A. Synthesis of Polyethyleneimine (PEI) and β-Cyclodextrin Grafted PEI Nanocomposites with Magnetic Cores for Lipase Immobilization and Esterification. J. Chem. Technol. Biotechnol. 2016, 91, 375–384. DOI: 10.1002/jctb.4579.
  • Fu, L.; Deng, W.; Liu, L.; Peng, Y. Nanopalladium on Polyethylenimine–Grafted Starch: An Efficient and Ecofriendly Heterogeneous Catalyst for Suzuki–Miyaura Coupling and Transfer Hydrogenation Reactions. Appl. Organom. Chemis. 2017, 31, e3853. DOI: 10.1002/aoc.3853.
  • Liu, C.; Yang, L.; Zhang, J.; Sun, J. Facile Fabrication of a Heterogeneous Co-Modified Pyridinecarboxaldehyde-Polyethylenimine Catalyst for Efficient CO2 Conversion under Mild Conditions. Inorg. Chem. Front. 2020, 7, 1140–1147. DOI: 10.1039/C9QI01401B.
  • Yadav, G. D.; Mujeebur Rahuman, M. S. M. Synthesis of Fragrance and Flavour Grade Esters: activities of Different Ion Exchange Resins and Kinetic Studies. Clean Technol. Environ. Policy 2003, 5, 128–135. DOI: 10.1007/s10098-003-0196-9.
  • Lavis, L. D. Ester Bonds in Prodrugs. ACS Chem. Biol. 2008, 3, 203–206. DOI: 10.1021/cb800065s.
  • Mohamed, A. S.; Awad, M. M. Synthesis and Surface Properties of Some Dyestuff Esters. Mater. Sci. Res. India 2003, 1, 59–64.
  • Campos, J.; Verdeguer, M.; Baur, P. Capped Polyethylene Glycol Esters of Fatty Acids as Novel Active Principles for Weed Control. Pest Manag. Sci. 2021, 77, 4648–4657. DOI: 10.1002/ps.6505.
  • Guan, H.; Zhang, Q.; Walsh, P. J.; Mao, J. Nickel/Photoredox-Catalyzed Asymmetric Reductive Cross-Coupling of Racemic α-Chloro Esters with Aryl Iodides. Angew. Chem. Int. Ed. Engl. 2020, 59, 5172–5177. DOI: 10.1002/anie.201914175.
  • Lloret, V.; Rivero-Crespo, M. Á.; Vidal-Moya, J. A.; Wild, S.; Doménech-Carbó, A.; Heller, B. S. J.; Shin, S.; Steinrück, H.-P.; Maier, F.; Hauke, F.; et al. Few Layer 2D Pnictogens Catalyze the Alkylation of Soft Nucleophiles with Esters. Nat. Commun. 2019, 10, 509. DOI: 10.1038/s41467-018-08063-3.
  • Fiorio, J. L.; Braga, A. H.; Guedes, C. L. B.; Rossi, L. M. Reusable Heterogeneous Tungstophosphoric Acid-Derived Catalyst for Green Esterification of Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 15874–15883. DOI: 10.1021/acssuschemeng.9b01579.
  • Mirza-Aghayan, M.; Tavana, M. M.; Niazi, G. A. E.; Boukherroub, R. Efficient and Regioselective Ring-Opening of Epoxides with Carboxylic Acid Catalyzed by Graphite Oxide. LOC. 2020, 17, 532–538. DOI: 10.2174/1570178616666190401194252.
  • Ouellette, R. J.; Rawn, J. D. 21 - Carboxylic Acids. In Organic Chemistry, 2nd ed.; Ouellette, R. J.; Rawn, J. D., Eds.; Academic Press : United States, 2018; pp 625–663.
  • Jayakrishnan, K. R.; Tamilarasu, M.; Jincy, K. V.; Kaliyamoorthy, A. N-Heterocyclic Carbene as a Brønsted Base Catalyst for the Amination of Naphthol Derivatives and Alcoholysis of Glutaric Anhydrides. Tetrahedron Lett. 2019, 60, 151131–151136. DOI: 10.1016/j.tetlet.2019.151131.
  • Kanbayashi, N.; Onitsuka, K. Enantioselective Synthesis of Allylic Esters via Asymmetric Allylic Substitution with Metal Carboxylates Using Planar-Chiral Cyclopentadienyl Ruthenium Catalysts. J. Am. Chem. Soc. 2010, 132, 1206–1207. DOI: 10.1021/ja908456b.
  • Zhou, X.-Y.; Chen, X. Na2CO3-Catalyzed O-Acylation of Phenols for the Synthesis of Aryl Carboxylates with Use of Alkenyl Carboxylates. Synlett 2018, 29, 2321–2325. DOI: 10.1055/s-0037-1610265.
  • Shelkov, R.; Nahmany, M.; Melman, A. Acylation through Ketene Intermediates. J. Org. Chem. 2002, 67, 8975–8982. DOI: 10.1021/jo0263824.
  • Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Direct Synthesis of Adipic Acid Esters via Palladium-Catalyzed Carbonylation of 1,3-Dienes. Science 2019, 366, 1514–1517. DOI: 10.1126/science.aaz1293.
  • Cadierno, V. Gold-Catalyzed Addition of Carboxylic Acids to Alkynes and Allenes: Valuable Tools for Organic Synthesis. Catalysts 2020, 10, 1206–1241. DOI: 10.3390/catal10101206.
  • Curran, S. P.; Connon, S. J. Selenide Ions as Catalysts for Homo- and Crossed-Tishchenko Reactions of Expanded Scope. Org. Lett. 2012, 14, 1074–1077. DOI: 10.1021/ol203439g.
  • Pfaff, D.; Nemecek, G.; Podlech, J. A Lewis Acid-Promoted Pinner Reaction. Beilstein J. Org. Chem. 2013, 9, 1572–1577. DOI: 10.3762/bjoc.9.179.
  • Pathak, S. Acid Catalyzed Transesterification. J. Chem. Pharm. Res. 2015, 7, 1780–1786.
  • Selva, M.; Perosa, A.; Guidi, S.; Cattelan, L. Ionic Liquids as Transesterification Catalysts: applications for the Synthesis of Linear and Cyclic Organic Carbonates. Beilstein J. Org. Chem. 2016, 12, 1911–1924. DOI: 10.3762/bjoc.12.181.
  • Li, H.; Liu, F.; Ma, X.; Cui, P.; Guo, M.; Li, Y.; Gao, Y.; Zhou, S.; Yu, M. An Efficient Basic Heterogeneous Catalyst Synthesis of Magnetic Mesoporous Fe@C Support SrO for Transesterification. Renew. Energ. 2020, 149, 816–827. DOI: 10.1016/j.renene.2019.12.118.
  • Pal, C.; Mahato, S.; Joshi, M.; Paul, S.; Choudhury, A.; Biswas, B. Transesterification Activity by a Zinc(II)-Schiff Base Complex with Theoretical Interpretation. Inorg. Chim. Acta 2020, 506, 119541–119550. DOI: 10.1016/j.ica.2020.119541.
  • Sun, H.; Li, H.; Chang, X.; Miao, S.; Yuan, X.; Zhang, W.; Jia, M. Nitrogen-Doped Carbon Supported ZnO as Highly Stable Heterogeneous Catalysts for Transesterification Synthesis of Ethyl Methyl Carbonate. J. Colloid Interface Sci. 2021, 581, 126–134. DOI: 10.1016/j.jcis.2020.07.095.
  • Yang, J.; Ji, C.; Zhao, Y.; Li, Y.; Jiang, S.; Zhang, Z.; Ji, Y.; Liu, W. BF3·OEt2: An Efficient Catalyst for Transesterification of β-Ketoesters. Synth. Commun. 2010, 40, 957–963. DOI: 10.1080/00397910903029842.
  • Mahdavi, V.; Abedini, F. Preparation and Characterization of CaO/MgO Catalyst and Its Application for Transesterification of n-Butyl Acetate with Methanol. Chem. Eng. Commun. 2016, 203, 114–122. DOI: 10.1080/00986445.2014.962688.
  • Chiarotto, I. Tetraethylammonium Hydrogen Carbonate: A Cheap, Efficient, and Recyclable Catalyst for Transesterification Reactions under Solvent-Free Conditions. Synth. Commun. 2016, 46, 1840–1847. DOI: 10.1080/00397911.2016.1233343.
  • Oshimura, M.; Oda, Y.; Kondoh, K.; Hirano, T.; Ute, K. Efficient Acylation and Transesterification Catalyzed by Dilithium Tetra-Tert-Butylzincate at Low Temperatures. Tetrahedron Lett. 2016, 57, 2070–2073. DOI: 10.1016/j.tetlet.2016.03.096.
  • Van de Steene, E.; De Clercq, J.; Thybaut, J. W. Adsorption and Reaction in the Transesterification of Ethyl Acetate with Methanol on Lewatit K1221. J. Mol. Catal. A Chem. 2012, 359, 57–68. DOI: 10.1016/j.molcata.2012.03.021.
  • Midya, S. P.; Mondal, A.; Begum, A.; Balaraman, E. A Simple Cobalt(II) Chloride Catalyzed N-Alkylation of Amines with Alcohols. Synthesis 2017, 49, 3957–3961. DOI: 10.1055/s-0036-1589064.
  • De, S. K. Cobalt(II) Chloride Catalyzed One-Pot Synthesis of α-Aminonitriles. Beilstein J. Org. Chem. 2005, 1, 8–10. DOI: 10.1186/1860-5397-1-8.
  • De, S. K. Cobalt(II) Chloride as a Novel and Efficient Catalyst for the Synthesis of 1,2,5-Trisubstituted Pyrroles under Solvent-Free Conditions. Heteroat. Chem. 2008, 19, 592–595. DOI: 10.1002/hc.20482.
  • Karimi-Jaberi, Z.; Zare, H.; Amiri, M.; Sadeghi, N. Cobalt(II) Chloride Accelerated One-Pot Three-Component Synthesis of α-Aminophosphonates at Room Temperature. Chin. Chem. Lett. 2011, 22, 559–562. DOI: 10.1016/j.cclet.2010.11.034.
  • Velusamy, S.; Punniyamurthy, T. Cobalt(II)-Catalyzed Chemoselective Synthesis of Acetals from Aldehydes. Tetrahedron Lett. 2004, 45, 4917–4920. DOI: 10.1016/j.tetlet.2004.04.126.
  • Schroeter, F.; Lerch, S.; Kaliner, M.; Strassner, T. Cobalt-Catalyzed Hydroarylations and Hydroaminations of Alkenes in Tunable Aryl Alkyl Ionic Liquids. Org. Lett. 2018, 20, 6215–6219. DOI: 10.1021/acs.orglett.8b02688.
  • Ma, W.-Y.; Han, G.-Y.; Kang, S.; Pang, X.; Liu, X.-Y.; Shu, X.-Z. Cobalt-Catalyzed Enantiospecific Dynamic Kinetic Cross-Electrophile Vinylation of Allylic Alcohols with Vinyl Triflates. J. Am. Chem. Soc. 2021, 143, 15930–15935. DOI: 10.1021/jacs.1c08695.
  • Jamilah; Krisnandi, Y. K.; Sihombing, R. 2016 Synthesis and Characterization of Mesoporous Co/ZSM5 Catalyst and Activity Study on Transesterification Reaction. AIP Conf Proc., 1729, 020042–020045. DOI: 10.1063/1.4946945.
  • Phadtare, D.; Kondawar, S.; Athawale, A.; Rode, C. Crystalline LaCoO3 Perovskite as a Novel Catalyst for Glycerol Transesterification. Mol. Catal. 2019, 475, 110496–110505. DOI: 10.1016/j.mcat.2019.110496.
  • Sheikh, S.; Goudarzian, N. Synthesis, Kinetic Study, and Applications of Polyethyleneimine Supported Nano Zirconium Chromate in Oxidation of Furfuryl Alcohol to Corresponding Carbonyl Compound. Monatsh. Chem. 2016, 147, 1531–1538. DOI: 10.1007/s00706-015-1650-1.
  • Kislenko, V. N.; Oliynyk, L. P. Complex Formation of Polyethyleneimine with Copper(II), Nickel(II), and Cobalt(II) Ions. J. Polym. Sci. A Polym. Chem. 2002, 40, 914–922. DOI: 10.1002/pola.10157.
  • Azadi, S.; Goudarzian, N.; Parish, M. H.; Niroomand Hosseini, F. Polyvinyl­pyrrolidone-Supported Zirconium Nanoparticles: synthesis, Characterization, Efficiency as a New Polymer Nanocomposite Catalyst for One-Step Transesterification Reaction. Monatsh. Chem. 2023, 154, 239–248. DOI: 10.1007/s00706-022-03024-5.
  • Martínez–Castelló, A.; Tejeda–Serrano, M.; Nowacka, A. E.; Oliver–Meseguer, J.; Leyva–Pérez, A. Solid–Catalyzed Esterification Reaction of Long–Chain Acids and Alcohols in Fixed–Bed Reactors at Pilot Plant Scale. Chem. Eng. Process. Process Intensif. 2022, 178, 109038. DOI: 10.1016/j.cep.2022.109038.
  • Melo, A. D. Q.; Silva, F. F. M.; Dos Santos, J. C. S.; Fernández-Lafuente, R.; Lemos, T. L. G.; Dias Filho, F. A. Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules 2017, 22, 2165–2181. DOI: 10.3390/molecules22122165.
  • Farhadi, S.; Zaidi, M. Bismuth Ferrite (BiFeO3) Nanopowder Prepared by Sucrose-Assisted Combustion Method: A Novel and Reusable Heterogeneous Catalyst for Acetylation of Amines, Alcohols and Phenols under Solvent-Free Conditions. J. Mol. Catal. A. Chem. 2009, 299, 18–25. DOI: 10.1016/j.molcata.2008.10.013.
  • Hosseini Sarvari, M.; Sharghi, H. Zinc Oxide (ZnO) as a New, Highly Efficient, and Reusable Catalyst for Acylation of Alcohols, Phenols and Amines under Solvent Free Conditions. Tetrahedron 2005, 61, 10903–10907. DOI: 10.1016/j.tet.2005.09.002.
  • Esmaeilpour, M.; Sardarian, A. R. Dodecylbenzenesulfonic Acid as an Efficient, Chemoselective and Reusable Catalyst in the Acetylation and Formylation of Alcohols and Phenols under Solvent-Free Conditions at Room Temperature. Iran. J. Sci. Technol. Trans. A. Sci 2014, 38, 175–186. DOI: 10.22099/ijsts.2014.1998.
  • Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Sambri, L. Zn(ClO4)2·6H2O as a Powerful Catalyst for a Practical Acylation of Alcohols with Acid Anhydrides. Eur. J. Org. Chem. 2003, 2003, 4611–4617. DOI: 10.1002/ejoc.200300458.
  • Mou, F.; Sun, Y.; Jin, W.; Zhang, Y.; Wang, B.; Liu, Z.; Guo, L.; Huang, J.; Liu, C. Reusable Ionic Liquid-Catalyzed Oxidative Esterification of Carboxylic Acids with Benzylic Hydrocarbons via Benzylic Csp3–H Bond Activation under Metal-Free Conditions. RSC Adv. 2017, 7, 23041–23045. DOI: 10.1039/C7RA02788E.
  • Malkar, R. S.; Yadav, G. D. Superior Activity and Selectivity of Multifunctional Catalyst Pd-DTP@ZIF-8 in One Pot Synthesis of 3-Phenyl Propyl Benzoate. Inorg. Chim. Acta 2019, 490, 282–293. DOI: 10.1016/j.ica.2019.03.012.
  • Moon, H. K.; Sung, G. H.; Yoon, Y.-J.; Yoon, H. J. Alkyl and Aryl 4,5-Dichloro-6-Oxopyridazin-1(6H)-Carboxylates: A Practical Alternative to Chloroformates for the Synthesis of Symmetric and Asymmetric Carbonates. Synlett 2016, 27, 1577–1581. DOI: 10.1055/s-0035-1561411.
  • Sardarian, A. R.; Abbasi, F.; Esmaeilpour, M. Fe3O4@Zein Nanocomposites Decorated with Copper(II) as an Efficient, Durable, and Biocompatible Reusable Catalyst for Click Synthesis of Novel Fluorescent 1,4-Disubstituted-1,2,3-Triazoles in Water. Sustain. Chem. Pharm 2023, 36, 101256. DOI: 10.1016/j.scp.2023.101256.
  • Peng, Y.; Cui, X.; Zhang, Y.; Feng, T.; Tian, Z.; Xue, L. Kinetic Study of Transesterification of Methyl Acetate with Ethanol Catalyzed by 4-(3-Methyl-1-Imidazolio)-1-Butanesulfonic Acid Triflate. Appl. Catal. A 2013, 466, 131–136. DOI: 10.1016/j.apcata.2013.06.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.