160
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Antibacterial properties of cotton fabric coated with cellulose nanofibers conjugated with pomegranate nanoparticles

, , , , , , , , & ORCID Icon show all
Pages 639-646 | Received 22 Aug 2022, Accepted 04 Feb 2023, Published online: 08 May 2023

References

  • Ahmad, N., Sharma, S., & Rai, R. (2012). Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Advanced Materials Letters, 3(5), 1–13.
  • Andrade, M. A., Lima, V., Sanches Silva, A., Vilarinho, F., Castilho, M. C., Khwaldia, K., & Ramos, F. (2019). Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends in Food Science & Technology, 86, 68–84. https://doi.org/10.1016/j.tifs.2019.02.010
  • Deepashree, C. L., Kumar, J., Prasad, A. G., Zarei, M., & Gopal, S. (2012). FTIR spectroscopic studies on Cleome gynandra – Comparative analysis of functional group before and after extraction. Romanian Journal of Biophysics, 22, 137–143.
  • Fei, Z., Liu, B., Zhu, M., Wang, W., & Yu, D. (2018). Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose, 25(5), 3179–3188. https://doi.org/10.1007/s10570-018-1771-x
  • Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D. V., Melro, L., Nicolau, T., Mehravani, B., Alves, C., Rodrigues, R., & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006. https://doi.org/10.3390/nano12061006
  • Foss, S. R., Nakamura, C. V., Ueda-Nakamura, T., Cortez, D. A., Endo, E. H., & Dias Filho, B. P. (2014). Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–6. https://doi.org/10.1186/s12941-014-0032-6
  • Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S., & Ennahar, S. (2021). Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352, 129396. https://doi.org/10.1016/j.foodchem.2021.129396
  • Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S., & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Scientific Reports, 6(1), 32539. https://doi.org/10.1038/srep32539
  • Granados, A., Pleixats, R., & Vallribera, A. (2021). Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures. Molecules, 26(10), 3008. https://doi.org/10.3390/molecules26103008
  • Gubitosa, J., Rizzi, V., Lopedota, A., Fini, P., Laurenzana, A., Fibbi, G., Fanelli, F., Petrella, A., Laquintana, V., Denora, N., Comparelli, R., & Cosma, P. (2018). One pot environmental friendly synthesis of gold nanoparticles using Punica granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications. Journal of Colloid and Interface Science, 521, 50–61. https://doi.org/10.1016/j.jcis.2018.02.069
  • Jafary, R., Mehrizi, M., Hekmatimoghaddam, S., & Jebali, A. (2015). Antibacterial property of cellulose fabric finished by allicin-conjugated nanocellulose. The Journal of The Textile Institute, 106(7), 683–689. https://doi.org/10.1080/00405000.2014.954780
  • Khan, M., Shaik, M. R., Adil, S. F., Khan, S. T., Al-Warthan, A., Siddiqui, M. R. H., Tahir, M. N., & Tremel, W. (2018). Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis. Dalton Transactions, 47(35), 11988–12010. https://doi.org/10.1039/C8DT01152D
  • Kharchoufi, S., Licciardello, F., Siracusa, L., Muratore, G., Hamdi, M., & Restuccia, C. (2018). Antimicrobial and antioxidant features of ‘Gabsi’ pomegranate peel extracts. Industrial Crops and Products, 111, 345–352. https://doi.org/10.1016/j.indcrop.2017.10.037
  • Kim, Y., & Lieber, C. M. (1992). Machining oxide thin films with an atomic force microscope: Pattern and object formation on the nanometer scale. Science, 257(5068), 375–377. https://doi.org/10.1126/science.257.5068.375
  • Lydia, D. E., Khusro, A., Immanuel, P., Esmail, G. A., Al-Dhabi, N. A., & Arasu, M. V. (2020). Photo-activated synthesis and characterization of gold nanoparticles from Punica granatum L. seed oil: An assessment on antioxidant and anticancer properties for functional yoghurt nutraceuticals. Journal of Photochemistry and Photobiology B: Biology, 206, 111868. https://doi.org/10.1016/j.jphotobiol.2020.111868
  • Mehra, A., Chauhan, S., Jain, V., & Nagpal, S. (2022). Nanoparticles of punicalagin synthesized from pomegranate (Punica granatum L.) with enhanced efficacy against human hepatic carcinoma cells. Journal of Cluster Science, 33(1), 349–359. https://doi.org/10.1007/s10876-021-01979-9
  • Mehravani, B., Ribeiro, A. I., & Zille, A. (2021). Gold nanoparticles synthesis and antimicrobial effect on fibrous materials. Nanomaterials (Basel, Switzerland), 11(5), 1067. https://doi.org/10.3390/nano11051067
  • Moreno, S., Scheyer, T., Romano, C. S., & Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40(2), 223–231. https://doi.org/10.1080/10715760500473834
  • Naeem, G. A., Muslim, R. F., Rabeea, M. A., Owaid, M. N., & Abd-Alghafour, N. M. (2020). Punica granatum L. mesocarp-assisted rapid fabrication of gold nanoparticles and characterization of nano-crystals. Environmental Nanotechnology, Monitoring & Management, 14, 100390. https://doi.org/10.1016/j.enmm.2020.100390
  • Pagliarulo, C., De Vito, V., Picariello, G., Colicchio, R., Pastore, G., Salvatore, P., & Volpe, M. G. (2016). Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli. Food Chemistry, 190, 824–831. https://doi.org/10.1016/j.foodchem.2015.06.028
  • Pang, G. K. H., Baba-Kishi, K. Z., & Patel, A. (2000). Topographic and phase-contrast imaging in atomic force microscopy. Ultramicroscopy, 81(2), 35–40. https://doi.org/10.1016/S0304-3991(99)00164-3
  • Rattanata, N., Klaynongsruang, S., Leelayuwat, C., Limpaiboon, T., Lulitanond, A., Boonsiri, P., Chio-Srichan, S., Soontaranon, S., Rugmai, S., & Daduang, J. (2016). Gallic acid conjugated with gold nanoparticles: Antibacterial activity and mechanism of action on foodborne pathogens. International Journal of Nanomedicine, 27(11), 3347–3356. https://doi.org/10.2147/IJN.S109795
  • Roy, S., Das, T. K., Maiti, G. P., & Basu, U. (2016). Microbial biosynthesis of nontoxic gold nanoparticles. Materials Science and Engineering: B, 203, 41–51. https://doi.org/10.1016/j.mseb.2015.10.008
  • Ryaguzov, A. P., Assembayeva, A. R., Myrzabekova, M. M., Nemkayeva, R. R., & Guseinov, N. R. (2022). Study of the influence of palladium nanoparticles on the structure of DLC films synthesized on silicon (100) substrates. Diamond and Related Materials, 126, 109125. https://doi.org/10.1016/j.diamond.2022.109125
  • Salem, N., Albanna, L., & Awwad, A. (2017). Nano-structured zinc sulfide to enhance Cucumis sativus (Cucumber) plant growth. ARPN Journal of Agricultural and Biological Science, 12, 167–173.
  • Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International Journal of Molecular Sciences, 20(10), 2468. https://doi.org/10.3390/ijms20102468
  • Sharif, M., Ansari, F., Malik, A., Ali, Q., Hasan, Z., & Khan, N. U. H. (2020). Fourier-Transform Infrared Spectroscopy, Antioxidant, Phytochemical and Antibacterial Screening of N-Hexane Extracts of Punica granatum. A Medicinal Plant, Genetics and Molecular Research, 19, 1–17.
  • Tong, W., Abdullah, A., Rozman, N., Wahid, M., Hossain, M., Ring, L., Lazim, Y., & Tan, W.-N. (2018). Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose, 25(1), 631–638. https://doi.org/10.1007/s10570-017-1562-9
  • Turkevich, J., Garton, G., & Stevenson, P. C. (1954). The color of colloidal gold. Journal of Colloid Science, 9, 26–35. https://doi.org/10.1016/0095-8522(54)90070-7
  • Wang, L., Natan, M., Zheng, W., Zheng, W., Liu, S., Jacobi, G., Perelshtein, I., Gedanken, A., Banin, E., & Jiang, X. (2020). Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Advances, 2(6), 2293–2302. https://doi.org/10.1039/D0NA00179A
  • Yang, X., Wang, Z., Zhang, Y., & Liu, W. (2020). A biocompatible and sustainable anti-ultraviolet functionalization of cotton fabric with nanocellulose and chitosan nanocomposites. Fibers and Polymers, 21(11), 2521–2529. https://doi.org/10.1007/s12221-020-1339-x
  • Ye, Z., & Zhao, X. (2010). Phase imaging atomic force microscopy in the characterization of biomaterials. Journal of Microscopy, 238(1), 27–35. https://doi.org/10.1111/j.1365-2818.2009.03282.x
  • Zhang, Q., Zhang, L., Wu, W., & Xiao, H. (2020). Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers, 229, 115454. https://doi.org/10.1016/j.carbpol.2019.115454

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.