118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Graphene-coated nylon nonwoven for pressure sensing application

& ORCID Icon
Pages 607-618 | Received 04 Jul 2022, Accepted 31 Jan 2023, Published online: 06 Jul 2023

References

  • Choudhry, N. A., Rasheed, A., Ahmad, S., Arnold, L., & Wang, L. (2020). Design, development and characterization of textile stitch-based piezoresistive sensors for wearable monitoring. IEEE Sensors Journal, 20(18), 10485–10494. https://doi.org/10.1109/JSEN.2020.2994264
  • Chun, S., Kim, Y., Oh, H.-S., Bae, G., & Park, W. (2015). A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale, 7(27), 11652–11659. https://doi.org/10.1039/C5NR00076A
  • Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002
  • Giménez-Martín, E., López-Andrade, M., Moleón-Baca, J. A., López, M. A., & Ontiveros-Ortega, A. (2015). Polyamide fibers covered with chlorhexidine: thermodynamic aspects. Journal of Surface Engineered Materials and Advanced Technology, 05(04), 190–206. https://doi.org/10.4236/jsemat.2015.54021
  • Huang, Y.-C., Liu, Y., Ma, C., Cheng, H.-C., He, Q., Wu, H., Wang, C., Lin, C., Yi, Huang, Y., & Duan, X. (2020). Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nature Electronics, 3(1), 59–69. https://doi.org/10.1038/s41928-019-0356-5
  • Jain, V. K., & Chatterjee, A. (2021). Influence of fibre type and dipping cycle on graphene adsorption and electrical conductivity of fibres. Indian Journal of Fibre and Textile Research, 46, 149–157.
  • Jain, V. K., & Chatterjee, A. (2022). Graphene coated cotton nonwoven for electroconductive and UV protection applications. Journal of Industrial Textiles, 51(3_suppl), 4390S–4409S. https://doi.org/10.1177/15280837211059202
  • Ji, Y., Chen, G., & Xing, T. (2019). Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide. Applied Surface Science, 474, 203–210. https://doi.org/10.1016/j.apsusc.2018.03.120
  • Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez C, V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S-j., Hyrenbach, K. D., Jensen, B. A., & Lynch, J. M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061
  • Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2016). Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles. The Journal of the Textile Institute, 107(9), 1122–1134. https://doi.org/10.1080/00405000.2015.1093311
  • Kayaci, F., Ozgit-Akgun, C., Donmez, I., Biyikli, N., & Uyar, T. (2012). Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: Flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Applied Materials & Interfaces, 4(11), 6185–6194. https://doi.org/10.1021/am3017976
  • Konkena, B., & Vasudevan, S. (2012). Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. The Journal of Physical Chemistry Letters, 3(7), 867–872. https://doi.org/10.1021/jz300236w
  • Lee, K., Lee, S. S., Lee, J. A., Lee, K.-C., & Ji, S. (2010). Carbon nanotube film piezoresistors embedded in polymer membranes. Applied Physics Letters, 96(1), 013511. https://doi.org/10.1063/1.3272686
  • Li, J., Orrego, S., Pan, J., He, P., & Kang, S. H. (2019). Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale, 11(6), 2779–2786. https://doi.org/10.1039/C8NR09959F
  • Li, P., Zhao, L., Jiang, Z., Yu, M., Li, Z., Zhou, X., & Zhao, Y. (2019). A wearable and sensitive graphene-cotton based pressure sensor for human physiological signals monitoring. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-50997-1
  • Liu, Y., Tao, L.-Q., Wang, D.-Y., Zhang, T.-Y., Yang, Y., & Ren, T.-L. (2017). Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Applied Physics Letters, 110(12), 123508. https://doi.org/10.1063/1.4978374
  • Ma, W., Jiang, Z., Lu, T., Xiong, R., & Huang, C. (2022). Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chemical Engineering Journal, 430(P3), 132989. https://doi.org/10.1016/j.cej.2021.132989
  • Malhotra, U., Maity, S., & Chatterjee, A. (2015). Polypyrrole-silk electro-conductive composite fabric by in situ chemical polymerization. Journal of Applied Polymer Science, 132(4), n/a–n/a. https://doi.org/10.1002/app.41336
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
  • Menchaca-Campos, C., García-Pérez, C., Castañeda, I., García-Sánchez, M. A., Guardián, R., & Uruchurtu, J. (2013). Nylon/graphene oxide electrospun composite coating. International Journal of Polymer Science, 2013, 1–9. https://doi.org/10.1155/2013/621618
  • Miraftab, R., & Xiao, H. (2019). Feasibility and potential of graphene and its hybrids with cellulose as drug carriers: A commentary. Journal of Bioresources and Bioproducts, 4(4), 200–201. https://doi.org/10.12162/jbb.v4i4.013
  • Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045
  • Shih, C., Lin, S., Sharma, R., Strano, M. S., & Blankschtein, D. (2012). Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir: The ACS Journal of Surfaces and Colloids, 28(1), 235–241. https://doi.org/10.1021/la203607w
  • Thilagavathi, G., Pradeep, E., Kannaian, T., & Sasikala, L. (2010). Development of natural fiber nonwovens for application as car interiors for noise control. Journal of Industrial Textiles, 39(3), 267–278. https://doi.org/10.1177/1528083709347124
  • Tung, T. T., Robert, C., Castro, M., Feller, J. F., Kim, T. Y., & Suh, K. S. (2016). Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 108, 450–460. https://doi.org/10.1016/j.carbon.2016.07.018
  • Zhu, M., Li, J., Yu, J., Li, Z., & Ding, B. (2022). Superstable and intrinsically self‐healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angewandte Chemie, Int. Ed., 61, e202200226. https://doi.org/10.1002/ange.202200226
  • Zhu, M., Wang, Y., Lou, M., Yu, J., Li, Z., & Ding, B. (2021). Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy. 81, 105669. https://doi.org/10.1016/j.nanoen.2020.105669
  • Zhu, S., Wang, M., Qiang, Z., Song, J., Wang, Y., Fan, Y., You, Z., Liao, Y., Zhu, M., & Ye, C. (2021). Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process. Chemical Engineering Journal, 406(3), 127140. https://doi.org/10.1016/j.cej.2020.127140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.