Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 5
308
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fluid dynamic vibration absorber for vehicle suspension system

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1122-1141 | Received 22 Dec 2022, Accepted 20 May 2023, Published online: 26 Jun 2023

References

  • Dixon JC. The shock absorber handbook. 2nd ed. Chichester: John Wiley; 2007. (Wiley-Professional engineering publishing series).
  • Ersoy M, Gies S. Fahrwerkhandbuch. Wiesbaden: Springer Fachmedien Wiesbaden; 2017.
  • Smith MC. Synthesis of mechanical networks: the inerter. IEEE Trans Automat Contr. 2002;47(10):1648–1662. doi: 10.1109/TAC.2002.803532
  • Smith MC, Wang FC. Performance benefits in passive vehicle suspensions employing inerters. Veh Syst Dyn. 2004;42(4):235–257. doi: 10.1080/00423110412331289871
  • Smith MC, Swift SJ. Design of passive vehicle suspensions for maximal least damping ratio. Veh Syst Dyn. 2016;54(5):568–584. doi: 10.1080/00423114.2016.1145242
  • Scheibe F, Smith MC. Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Veh Syst Dyn. 2009;47(10):1229–1252. doi: 10.1080/00423110802588323
  • Lewis TD, Jiang JZ, Neild SA, et al. Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Veh Syst Dyn. 2020;58(3):472–493. doi: 10.1080/00423114.2019.1589535
  • Wang X, Liu X, Shan Y, et al. Analysis and optimization of the novel inerter-based dynamic vibration absorbers. IEEE Access. 2018;6:33169–33182. doi: 10.1109/ACCESS.2018.2844086
  • Chang W, Jin X, Huang Z, et al. Random response of nonlinear system with inerter-based dynamic vibration absorber. J Vib Eng Technol. 2021;9(8):1903–1909. doi: 10.1007/s42417-021-00334-6
  • Hu Y, Chen MZ, Shu Z. Passive vehicle suspensions employing inerters with multiple performance requirements. J Sound Vib. 2014;333(8):2212–2225. doi: 10.1016/j.jsv.2013.12.016
  • Zhang SY, Zhu M, Li Y, et al. Ride comfort enhancement for passenger vehicles using the structure-immittance approach. Veh Syst Dyn. 2021;59(4):504–525. doi: 10.1080/00423114.2019.1694158
  • Shen Y, Jiang JZ, Neild SA, et al. Vehicle vibration suppression using an inerter-based mechatronic device. Proc Inst Mech Eng Part D: J Autom Eng. 2020;234(10–11):2592–2601. doi: 10.1177/0954407020909245
  • Deastra P, Wagg DJ, Sims ND. The realisation of an inerter-based system using fluid inerter. In: Pakzad S, editor. Dynamics of civil structures. Vol. 2. Cham: Springer International Publishing; 2019. p. 127–134. (Conference Proceedings of the Society for Experimental Mechanics Series).
  • Swift SJ, Smith MC, Glover AR, et al. Design and modelling of a fluid inerter. Int J Control. 2013;86(11):2035–2051. doi: 10.1080/00207179.2013.842263
  • Liu X. Fluid inerter based vibration suppression: Modelling methodology. University of Bristol: Department of Mechanical Engineering; 2019.
  • Nie J, Yang Y, Jiang T, et al. Passive skyhook suspension reduction for improvement of ride comfort in an off-road vehicle. IEEE Access. 2019;7:150710–150719. doi: 10.1109/Access.6287639
  • Corneli T, Pelz PF. Employing hydraulic transmission for light weight dynamic absorber. In: Murrenhoff H, editor. 9th International Fluid Power Conference (9th IFK). Vol. 3. Aachen: HP -- Fördervereinigung Fluidtechnik; 2014. p. 198–209.
  • Pelz PF, Cloos FJ, Corneli T, et al. Leichtbautilger für Fahrwerke. In: 3. vdi-fachtagung schwingungsdämpfung. Vol. 2261. Leonberg: VDI-Verlag; 2015. p. 121–129.
  • Brötz N, Hedrich P, Pelz PF. Integrated fluid dynamic vibration absorber for mobile applications. In: Murrenhoff H, editor. 11th International Fluid Power Conference (11th IFK). Vol. 1. Aachen: RWTH Aachen University; 2018. p. 14–25.
  • Brötz N, Pelz PF. Bayesian uncertainty quantification in the development of a new vibration absorber technology. In: Mao Z, editor. Model validation and uncertainty quantification, volume 3. Conference proceedings of the Society for Experimental Mechanics Series. Cham: Springer. doi: 10.1007/978-3-030-47638-0_2
  • Pelz PF, Groche P, Pfetsch M, et al. editors. Mastering uncertainty in mechanical engineering. 1st ed. Cham: Springer International Publishing; 2021. doi: 10.1007/978-3-030-78354-9
  • Spurk JH, Andrae R. Theorie des Hydrolagers. Autom Indust. 1985;1985(30):553–560.
  • Molloy CT. Use of four–pole parameters in vibration calculations. J Acoust Soc Am. 1957;29(1):181. doi: 10.1121/1.1918522
  • Sell H. Charakterisierung des dynamischen Verhaltens von elastischen Bauteilen im Einbauzustand. Weinheim: Vibracoustic; 2005.
  • Mitschke M, Wallentowitz H. Dynamik der Kraftfahrzeuge. Wiesbaden: Springer Fachmedien Wiesbaden; 2014.
  • Wang FC, Su WJ. Impact of inerter nonlinearities on vehicle suspension control. Veh Syst Dyn. 2008;46(7):575–595. doi: 10.1080/00423110701519031
  • Lazar IF, Neild SA, Wagg DJ. Using an inerter-based device for structural vibration suppression. Earthq Eng Struct Dyn. 2014;43(8):1129–1147. doi: 10.1002/eqe.v43.8
  • Hu Y, Chen MZ, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. J Sound Vib. 2015;346(10):17–36. doi: 10.1016/j.jsv.2015.02.041
  • Den Hartog JP. Mechanical vibrations. New York: Dover Publications; 1985. (Dover books on engineering).
  • Ozer MB, Royston TJ. Extending Den Hartog's vibration absorber technique to multi-degree-of-freedom systems. J Sound Vib. 2005;127(4):341–350. doi: 10.1115/1.1924642
  • Rivin EI. Passive vibration isolation. New York (NY): American Society of Mechanical Engineers; 2003. (ASME, Three Park Avenue. New York, NY 10016).
  • Baduidana M, Kenfack-Jiotsa A. Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation. J Vib Control. 2021;27(11–12):1297–1310. doi: 10.1177/1077546320940175
  • Joint Committee for Guides in Metrology. Evaluation of measurement data–guide to the expression of uncertainty in measurement. 2008.
  • Bjorkman M, Holmström K. Global optimization using the direct algorithm in matlab. Adv Model Optim. 2004;1:17–37.
  • Bailer-Jones CAL. Practical bayesian inference. Cambridge: Cambridge University Press; 2017.
  • Betta G, Liguori C, Pietrosanto A. Propagation of uncertainty in a discrete fourier transform algorithm. Measurement. 2000;27(4):231–239. doi: 10.1016/S0263-2241(99)00068-8
  • Brötz N, Rexer M, Pelz PF. Mastering model uncertainty by transfer from virtual to real system. In: Pelz PF, Groche P, editors. Uncertainty in mechanical engingeering. [S.l.]: Springer Nature; 2021. p. 35–44. (Lecture notes in mechanical engineering).
  • Ghobadi M, Muzychka YS. A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts. Heat Transf Eng. 2016;37(10):815–839. doi: 10.1080/01457632.2015.1089735
  • White CM. Streamline flow through curved pipes. Proc R Soc Lond Ser A Contain Pap Math Phys Charact. 1929;123(792):645–663.
  • White CM. Fluid friction and its relation to heat transfer. Trans Inst Chem Eng (Lond). 1932;1932(10):66–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.