Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
609
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Review of conformal wheel/rail contact modelling approaches: towards the application in rail vehicle dynamics simulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1355-1379 | Received 24 Jan 2023, Accepted 18 Jun 2023, Published online: 23 Jun 2023

References

  • Polach O, Berg M, Iwnicki S. Simulation of railway vehicle dynamics. In: S Iwnicki, M Spiryagin, C Cole, T McSweeney, editors. In handbook of railway vehicle dynamics, 2nd ed. London: CRC Press LLC; 2020. p. 651–722.
  • Liu B, Bruni S. Comparison of wheel–rail contact models in the context of multibody system simulation: Hertzian versus non-Hertzian. Veh Syst Dyn 2022;60(3):1076–1096. doi:10.1080/00423114.2020.1847297
  • Braghin F, Bruni S, Lewis R. Railway wheel wear. In: R Lewis, U Olofsson, editors. Wheel-rail interface handbook. Oxford: Woodhead Publishing Limited; 2009. p. 172–206.
  • Ekberg A. Fatigue of railway wheels. In: R Lewis, U Olofsson, editors. Wheel-rail interface handbook. Oxford: Woodhead Publishing Limited; 2009. p. 211–242.
  • Liu B, Bruni S, Lewis R. Numerical calculation of wear in rolling contact based on the Archard equation: effect of contact parameters and consideration of uncertainties. Wear. 2021;490–491(November):204188. doi:10.1016/j.wear.2021.204188
  • Kalker JJ. Survey of wheel-rail contact theory. Veh Syst Dyn 1979;8(4):317–358. doi:10.1080/00423117908968610
  • Kalker JJ. Wheel-rail rolling contact theory. Wear. 1991;144(no. 1–2):243–261. doi:10.1016/0043-1648(91)90018-P
  • Elkins JA. Prediction of wheel/rail interaction: the state-of-the-art. Veh Syst Dyn 1992;20(sup1):1–27. doi:10.1080/00423119208969385
  • Knothe K, Wille R, Zastrau BW. Advanced contact mechanics? Road and rail. Veh Syst Dyn 2001;35(no. 4–5):361–407. doi:10.1076/vesd.35.4.361.2043
  • Knothe K. History of wheel/rail contact mechanics: from Redtenbacher to Kalker. Veh Syst Dyn 2008;46(no. 1–2):9–26. doi:10.1080/00423110701586469
  • Vollebregt E. Survey of programs on contact mechanics developed by J.J. Kalker. Veh Syst Dyn 2008;46(no. 1–2):85–92. doi:10.1080/00423110701586451
  • Ayasse J, Chollet H, Sebès M. Wheel-Rail contact mechanics. In: S Iwnicki, M Spiryagin, C Cole, T McSweeney, editors. In handbook of railway vehicle dynamics. 2nd ed. London: CRC Press LLC; 2020. p. 242–278.
  • Piotrowski J, Chollet H. Wheel–rail contact models for vehicle system dynamics including multi-point contact. Veh Syst Dyn 2005;43(no. 6–7):455–483. doi:10.1080/00423110500141144
  • Meymand SZ, Keylin A, Ahmadian M. A survey of wheel–rail contact models for rail vehicles. Veh Syst Dyn 2016;54(3):386–428. doi:10.1080/00423114.2015.1137956
  • Vollebregt E, Six K, Polach O. Challenges and progress in the understanding and modelling of the wheel–rail creep forces. Veh Syst Dyn 2021;59(7):1026–1068. doi:10.1080/00423114.2021.1912367
  • Piotrowski J, Kik W. The influence of spin on creep forces for non-flat contact area. Veh Syst Dyn 1999;31:158–176. doi:10.1201/9780203736425
  • Blanco-Lorenzo J, Santamaria J, Vadillo EG, et al. On the influence of conformity on wheel–rail rolling contact mechanics. Tribol Int 2016;103:647–667. doi:10.1016/j.triboint.2016.07.017
  • Nielsen JCO, Ekberg A. Acceptance criterion for rail roughness level spectrum based on assessment of rolling contact fatigue and rolling noise. Wear. 2011;271(no. 1–2):319–327. doi:10.1016/j.wear.2010.10.013
  • Remington P, Webb J. Wheel/rail noise reduction through profile modification. J Sound Vib 1996;193(1):335–348. doi:10.1006/jsvi.1996.0274
  • Paul B, Hashemi J. Contact pressures on closely conforming elastic bodies. J Appl Mech Trans ASME. 1981;48(3):543–548. doi:10.1115/1.3157671
  • Li Z. Wheel-rail rolling contact and its application to wear simulation [PhD thesis]. Delft University of Technology 2002.
  • Vollebregt E, Segal G. Solving conformal wheel–rail rolling contact problems. Veh Syst Dyn 2014;52(sup1):455–468. doi:10.1080/00423114.2014.906634
  • Pascal J-P, Soua B. Solving conformal contacts using multi-Hertzian techniques. Veh Syst Dyn 2016;54(6):784–813. doi:10.1080/00423114.2016.1161201
  • Vollebregt E. Detailed wheel/rail geometry processing with the conformal contact approach. Multibody Syst Dyn 2021;52(2):135–167. doi:10.1007/s11044-020-09762-w
  • Johnson KL. Contact mechanics. Cambridge: Cambridge University Press; 1985.
  • Telliskivi T, Olofsson U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method. Proc Inst Mech Eng Part F- J Rail Rapid Transit. 2001;215(2):65–72. doi:10.1243/0954409011531404
  • Guo Y, Parker RG. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. Mech Mach Theory. 2012;51:32–45. doi:10.1016/j.mechmachtheory.2011.12.006
  • Vijayakar S, Busby H, Wilcox L. Finite element analysis of three-dimensional conformal contact with friction. Comput Struct 1989;33(1):49–61. doi:10.1016/0045-7949(89)90128-4
  • Nackenhorst U. The ALE-formulation of bodies in rolling contact theoretical foundations and finite element approach. Comput Methods Appl Mech Eng. 2004;193(39-41 SPEC. ISS.):4299–4322. doi:10.1016/j.cma.2004.01.033
  • Wang QJ, Xiong S. Elasticity for closely conformal contact interface. New York: Springer; 2013. p. 859–866.
  • Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction. Delft: Delft University of Technology; 1967.
  • Wang QJ. Conformal-Contact elements and systems. New York: Springer; 2013. p. 434–440.
  • Hertz H. Über die berührung fester elastischer Körper. J für die reine und Angew Math. 1882;1882(92):156–171. doi:10.1515/crll.1882.92.156
  • Nikas GK. Boussinesq-Cerruti functions and a simple technique for substantial acceleration of subsurface stress computations in elastic half-spaces. Proc Inst Mech Eng Part J J Eng Tribol. 2006;220(1):19–28. doi:10.1243/13506501JET125
  • Sichani MS, Enblom R, Berg M. Comparison of non-elliptic contact models: towards fast and accurate modelling of wheel-rail contact. Wear. 2013;314(no. 1–2):111–117. doi:10.1016/j.wear.2013.11.047
  • Liu B, Bruni S, Vollebregt E. A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Veh Syst Dyn 2016;54(9):1226–1246. doi:10.1080/00423114.2016.1196823
  • Fang X, Zhang C, Chen X, et al. A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces. Acta Mech 2015;226(6):1657–1672. doi:10.1007/s00707-014-1277-z
  • Wu H. Effects of wheel and rail profiles on vehicle performance. Veh Syst Dyn 2006;44(no. SUPPL. 1):541–550. doi:10.1080/00423110600875393
  • Spangenberg U, Fröhling RD, Els PS. Long-term wear and rolling contact fatigue behaviour of a conformal wheel profile designed for large radius curves. Veh Syst Dyn 2019;57(1):44–63. doi:10.1080/00423114.2018.1447677
  • Liu B, Mei TX, Bruni S. Design and optimisation of wheel–rail profiles for adhesion improvement. Veh Syst Dyn 2016;54(3):429–444. doi:10.1080/00423114.2015.1137958
  • Magel E, Kalousek J. Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2017;231(7):805–818. doi:10.1177/0954409717708079
  • Sawley K, Urban C, Walker R. The effect of hollow-worn wheels on vehicle stability in straight track. Wear. 2005;258(no. 7–8):1100–1108. doi:10.1016/j.wear.2004.03.058
  • Zhai W, Jin X, Wen Z, et al. Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China. Appl Mech Rev 2020;72(6):1–23. doi:10.1115/1.4048897
  • Magel EE, Kalousek J. The application of contact mechanics to rail profile design and rail grinding. Wear. 2002;253(no. 1–2):308–316. doi:10.1016/S0043-1648(02)00123-0
  • Alonso A, Giménez JG. Wheel-rail contact: roughness, heat generation and conforming contact influence. Tribol Int 2008;41(8):755–768. doi:10.1016/j.triboint.2008.01.004
  • Vollebregt E. Conformal contact: corrections and new results. Veh Syst Dyn 2018;56(10):1622–1632. doi:10.1080/00423114.2018.1424917
  • Wu H, Wang JM. Non-Hertzian conformal contact at wheel/rail interface. Proc 1995 IEEE/ASME Jt Railr Conf. 1995: 137–144. doi:10.1109/RRCON.1995.395158
  • Bruni S, Meijaard JP, Rill G, et al. State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody Syst Dyn 2020;49(1):1–32. doi:10.1007/s11044-020-09735-z
  • Shabana AA, Tobaa M, Sugiyama H, et al. On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn 2005;40(2):169–193. doi:10.1007/s11071-005-5200-y
  • Shabana AA, Zaazaa KE, Escalona JL, et al. Development of elastic force model for wheel/rail contact problems. J Sound Vib 2004;269(no. 1–2):295–325. doi:10.1016/S0022-460X(03)00074-9
  • Santamaría J, Vadillo EG, Gómez J. A comprehensive method for the elastic calculation of the two-point wheel–rail contact. Veh Syst Dyn 2006;44(sup1):240–250. doi:10.1080/00423110600870337
  • Vollebregt E. Detailed wheel/rail geometry processing using the planar contact approach. Veh Syst Dyn 2022;60(4):1253–1291. doi:10.1080/00423114.2020.1853180
  • Malvezzi M, Meli E, Falomi S, et al. Determination of wheel-rail contact points with semianalytic methods. Multibody Syst Dyn 2008;20(4):327–358. doi:10.1007/s11044-008-9123-5
  • Boccini E, Marini L, Meli E, et al. Development of An innovative wheel-rail conformal contact model. In Proceedings of the Third International Conference on Railway Technology:Research, Development and Maintenance; 2016. p. 1–15.
  • Wang K. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters. J Southwest Jiaotong Univ. 1984;1:89–99.
  • Pombo J, Ambrósio J, Silva M. A new wheel–rail contact model for railway dynamics. Veh Syst Dyn 2007;45(2):165–189. doi:10.1080/00423110600996017
  • Recuero AM, Shabana AA. A simple procedure for the solution of three-dimensional wheel/rail conformal contact problem. J Comput Nonlinear Dyn 2014;9(3):1–6. doi:10.1115/1.4026154
  • Marques F, Magalhães H, Ambrósio J, et al. Approach for conformal contact detection for wheel-rail interaction. Mech Mach Sci. 2019;59:71–78. doi:10.1007/978-3-319-98020-1_9
  • Baeza L, Thompson DJ, Squicciarini G, et al. Method for obtaining the wheel–rail contact location and its application to the normal problem calculation through ‘CONTACT’. Veh Syst Dyn 2018;56(no. 11):1734–1746. doi:10.1080/00423114.2018.1439178
  • Vollebregt E. Release-notes for CONTACT version 20.2. Rotterdam: Vtech CMCC; 2020.
  • Laursen TA. Computational contact and impact mechanics, fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Berlin: Springer; 2002.
  • Wriggers P. Computational contact mechanics. 2nd ed. Heidelberg: Springer; 2006.
  • Benson DJ, Hallquist JO. A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng. 1990;78(2):141–163. doi:10.1016/0045-7825(90)90098-7
  • Kalker JJ. Rolling contact phenomena : linear elasticity. In Proceedings of the CISM International Centre for Mechanical Sciences; 2001. p. 1–84.
  • Kalker JJ. Three dimensional elastic bodies in rolling contact. Dordrecht/Boston/London: Kluwer Academic Publishers; 1990.
  • Sassi M, Desvignes M. A seminumerical method for three-dimensional frictionless contact problems. Math Comput Model 1998;28(no. 4–8):413–425. doi:10.1016/S0895-7177(98)00131-9
  • Golubenko A, Kostyukevich A, Tsyganovskiy I. Wheel-rail conformal contact modeling. TEKA Comm Mot Energ Agric. 2013;13(4):69–74.
  • Vollebregt E. Comments on ‘the Kalker book of tables for non-Hertzian contact of wheel and rail.’ Veh Syst Dyn 2018;56(no. 9):1451–1459. doi:10.1080/00423114.2017.1421767
  • Piotrowski J, Bruni S, Liu B. Reply to comments on ‘The Kalker book of tables for non-Hertzian contact of wheel and rail’ by E. A. H. Vollebregt. Veh Syst Dyn. 2018;56(9):1460–1469. doi:10.1080/00423114.2018.1437274
  • Marques F,  Magalhães H, Liu B, et al. A new simplified approach to deal with conformal contact in railway dynamics. 5th Joint International Conference on Multibody System Dynamics; 2018. p. 1–14.
  • Zaazaa K. E. and Schwab A. L., Review of Joost Kalker’s wheel-rail contact theories and their implementation in multibody codes. Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009; 2009. p. 1–12.
  • Magalhães H,  Marques F, Liu B, et al. Implementation of a non-Hertzian contact model for railway dynamic application. Multibody Syst Dyn 2020;48(1):41–78. doi:10.1007/s11044-019-09688-y
  • Garg Vigay K, Dukkipati RV. Dynamics of railway vehicle systems. Ottawa: Academic Press Inc.; 1984.
  • Wickens AH. Fundamentals of rail vehicle dynamics. Lisse: Swets & Zeitlinger B.V; 2003.
  • Piotrowski J, Kik W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh Syst Dyn 2008;46(no. 1–2):27–48. doi:10.1080/00423110701586444
  • Blanco-Lorenzo J, Vollebregt EAH, Santamaria J, et al. Approximating the influence coefficients of non-planar elastic solids for conformal contact analysis. Tribol Int 2021;154:106671. doi:10.1016/j.triboint.2020.106671
  • Woodward W, Paul B. Contact stresses for closely confroming bodies - application to cylinders and spheres. Washington D.C.: U.S. Department of Transportation; 1976.
  • Zhao J, Vollebregt EAH, Oosterlee CW. Extending the BEM for elastic contact problems beyond the half-space approach. Math Model Anal 2017;21(1):119–141. doi:10.3846/13926292.2016.1138418
  • Oldknow K, Stock R, Vollebregt E. Effects of rail hardness on transverse profile evolution and computed contact conditions in a full-scale wheel-rail test rig evaluation. In Proceedings of the 12th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2022); 2022, no. September. p. 71–81.
  • Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn 1982;11(1):1–13. doi:10.1080/00423118208968684
  • Butini E, Marini L, Meli E, et al. A new wear model considering wheel-rail conformal contact. In Proceedings of the First International Conference on Rail Transportation; 2017. p. 237–249.
  • Nencioni L, Meli E, Shi Z, et al. Development of a conformal contact model for railway application. In Proceedings of the Fifth International Conference on Railway Technology: Research, Development and Maintenance; 2022. p. 1–8.
  • Sh. Sichani M, Enblom R, Berg M. A novel method to model wheel–rail normal contact in vehicle dynamics simulation. Veh Syst Dyn 2014;52(12):1752–1764. doi:10.1080/00423114.2014.961932
  • Qazi A, Yin H, Sebès M, et al. A semi-analytical numerical method for modelling the normal wheel–rail contact. Veh Syst Dyn 2022;60(4):1322–1340. doi:10.1080/00423114.2020.1854319
  • An B, Wang P. A wheel–rail normal contact model using the combination of virtual penetration method and strip-like Boussinesq’s integral. Veh. Syst. Dyn. 2022. doi:10.1080/00423114.2022.2085587
  • Quost X, et al. Assessment of a semi-Hertzian method for determination of wheel–rail contact patch. Veh Syst Dyn 2006;44(10):789–814. doi:10.1080/00423110600677948
  • Chevalier L, Eddhahak-Ouni A, Cloupet S. On a simplified model for numerical simulation of wear during dry rolling contacts. J Tribol 2009;131(1):1–15. doi:10.1115/1.3002322
  • Six K, Marte C, Payer J, et al. Application of a new contact model to wheelsets - comparison with state of the art models. In Proceedings of the IAVSD2011 - 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks; 2011. p. 1–6.
  • Sakalo V, Sakalo A, Rodikov A, et al. Fast algorithm for wheel and rail conformal contact modeling. Proc. 2015 Int Conf Mech Eng Autom Control Syst MEACS. 2015;2015(2):0–5. doi:10.1109/MEACS.2015.7414915
  • Pascal JP, Jourdan F. The rigid multi-Hertzian method as applied to conformal contacts. In Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference; 2007. p. 1–14.
  • Piotrowski J, Kalker JJ. The elastic cross-influence between Two quasi-Hertzian contact zones. Veh Syst Dyn 1988;17(6):337–355. doi:10.1080/00423118808968910

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.