Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 5
848
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transient tyre models with a flexible carcass

ORCID Icon, &
Pages 1268-1307 | Received 20 Sep 2022, Accepted 12 Jun 2023, Published online: 30 Aug 2023

References

  • Pacejka HB. Tire and vehicle dynamics. 3rd ed. Amsterdam: Elsevier/BH; 2012.
  • Guiggiani M. The science of vehicle dynamics. 3rd ed. Cham(Switzerland): Springer International; 2023. doi: 10.1007/978-3-031-06461-6
  • Genovese A, Garofano D, Sakhnevych A, et al. Static and dynamic analysis of non-pneumatic tires based on experimental and numerical methods. Appl Sci. 2021;11(23):Article ID 11232. doi: 10.3390/app112311232
  • Romano L, Bruzelius F, Jacobson B. Unsteady-state brush theory. Vehicle Syst Dyn. 2021;59(11):1643–1671. doi: 10.1080/00423114.2020.1774625
  • Carputo F, D'Andrea D, Risitano G, et al. A neural-network-based methodology for the evaluation of the center of gravity of a motorcycle rider. Vehicles. 2021;3(3):377–389. doi: 10.3390/vehicles3030023
  • Savaresi SM, Tanelli M. Active braking control systems design for vehicles. London: Springer-Verlag,; 2010. doi: 10.1007/978-1-84996-350-3
  • Koopman J, Jeltsema D, Verhaegen M. Port-hamiltonian description and analysis of the LuGre friction model. Simul Model Pract Theory. 2011;19(3):959–968. doi: 10.1016/j.simpat.2010.11.008
  • Yu H, Qi Z, Duan J, et al. Multiple model adaptive backstepping control for antilock braking system based on LuGre dynamic tyre model. Int J Veh Des. 2015;69(1-4):168–184. doi: 10.1504/IJVD.2015.073120
  • Hou X, Zhang J, Liu W, et al. LuGre model-based longitudinal ride comfort control of vehicle during the post-braking phase. In: 2020 Chinese Automation Congress (CAC); 2020. p. 7307–7313. doi: 10.1109/CAC51589.2020.9327063
  • Sharifzadeh M, Akbari A, Timpone F, et al. Vehicle tyre/road interaction modeling and identification of its parameters using real-time trust-region methods. IFAC-Pap. 2016;49(3):111–116. doi: 10.1016/j.ifacol.2016.07.019
  • Sharifzadeh M, Timpone F, Farnam A, et al. Tyre-road adherence conditions estimation for intelligent vehicle safety applications. In: Boschetti G, Gasparetto A, editors. Advances in Italian mechanism science. Mechanisms and machine science. Vol 47. Cham: Springer; 2017. doi: 10.1007/978-3-319-48375-7_42
  • Sharifzadeh M, Senatore A, Farnam A, et al. A real-time approach to robust identification of tyre–road friction characteristics on mixed-μ roads. Vehicle Syst Dyn. 2019;57(9):1338–1362. doi: 10.1080/00423114.2018.1504974
  • Shao L, Jin C, Lex C, et al. Nonlinear adaptive observer for side slip angle and road friction estimation. In: 2016 IEEE 55th Conference on Decision and Control (CDC); 2016. p. 6258–6265.
  • Shao L, Lex C, Hackl A, et al. Road friction estimation using recursive total least squares. In: 2016 IEEE Intelligent Vehicles Symposium (IV); 2016. p. 533–538.
  • Shao L, Jin C, Lex C, et al. Robust road friction estimation during vehicle steering. Vehicle Syst Dyn. 2019;57(4):493–519. doi: 10.1080/00423114.2018.1475678
  • Shao L, Jin C, Eicheberger A, et al. Grid search based tire-road friction estimation. IEEE Access. 2020;8:81506–81525. doi: 10.1109/Access.6287639
  • Villano E, Lenzo B, Sakhnevych A. Cross-combined UKF for vehicle sideslip angle estimation with a modified Dugoff tire model: design and experimental results. Meccanica. 2021;56(11):2653–2668. doi: 10.1007/s11012-021-01403-6
  • Guo N, Zhang X, Zou Y, et al. A supervisory control strategy of distributed drive electric vehicles for coordinating handling, lateral stability, and energy efficiency. IEEE Trans Transp Electrif. 2021;7(4):2488–2504. doi: 10.1109/TTE.2021.3085849
  • Di Biase F, Lenzo B, Timpone F. Vehicle sideslip angle estimation for a heavy-duty vehicle via extended Kalman filter using a rational tyre model. IEEE Access. 2020;8:142120–142130. doi: 10.1109/Access.6287639
  • Lenzo B, Zanchetta M, Sorniotti A, et al. Yaw rate and sideslip angle control through single input single output direct yaw moment control. IEEE Trans Control Syst Technol. 2020;29(1):124–139. doi: 10.1109/TCST.87
  • Sakhnevych A, Arricale VM, Bruschetta M, et al. Investigation on the model-based control performance in vehicle safety critical scenarios with varying tyre limits. Sensors. 2021;21(16):5372. doi: 10.3390/s21165372
  • Jaiswal M, Mavros G, Rahnejat H, et al. Influence of tyre transience on anti-lock braking. Proc Inst Mech Eng K: J Multi-body Dyn. 2010;224(1):1–13. doi: 10.1243/14644193JMBD225
  • Joa E, Yi K, Hyun Y. Estimation of the tire slip angle under various road conditions without tire–road information for vehicle stability control. Control Eng Pract. 2019;86:129–143. doi: 10.1016/j.conengprac.2019.03.005
  • Higuchi A. Transient response of tyres at large wheel slip and camber [doctoral thesis]. Delft; 1997.
  • Higuchi A, Pacejka HB. The relaxation length concept at large wheel slip and camber. Vehicle Syst Dyn. 1997;27(sup001):50–64. doi: 10.1080/00423119708969644
  • Pauwelussen JP. The local contact between tyre and road under steady state combined slip conditions. Vehicle Syst Dyn. 2004;41(1):1–26. doi: 10.1076/vesd.41.1.1.23406
  • Svendenius J, Wittenmark B. Brush tire model with increased flexibility. In: European Control Conference. Cambridge (UK); 2015. doi: 10.23919/ECC.2003.7085237
  • Svendenius J. Tire modelling and friction estimation [dissertation]. Lund; 2007.
  • Svendenius J, Gäfvert M, Bruzelius F, et al. Experimental validation of the brush tire model. Tire Sci Tech. 2009;37(2):122–137. doi: 10.2346/1.3130985
  • Rill G. Sophisticated but quite simple contact calculation for handling tire models. Multibody Syst Dyn. 2019;45:2131–153. doi: 10.1007/s11044-018-9629-4
  • Rill G. Road vehicle dynamics: fundamentals and modeling with MATLAB®. 2nd. Boca Raton: CRC Press; 2020.
  • Shaju A, Pandey AK. Modelling transient response using PAC 2002-based tyre model. Vehicle Syst Dyn. 2022;60(1):20–46. doi: 10.1080/00423114.2020.1802048
  • Romano L, Bruzelius F, Hjort M, et al. Development and analysis of the two-regime transient tyre model for combined slip. Vehicle Syst Dyn. 2023;61(4):1028–1062. doi: 10.1080/00423114.2022.2057335
  • Romano L. Advanced brush tyre modelling. Cham: Springer; 2022. (SpringerBriefs in Applied Sciences). doi: 10.1007/978-3-030-98435-9
  • Deur J. Modeling and analysis of longitudinal tire dynamics based on the Lugre friction model. IFAC Proc Vol. 2001;34(1):91–96. doi: 10.1016/S1474-6670(17)34383-5
  • Deur J, Asgari J, Hrovat D. A dynamic tire friction model for combined longitudinal and lateral motion. In: Proceedings of the ASME-IMECE World Conference; 2001.
  • Deur J, Asgari J, Hrovat D. A 3D brush-type dynamic tire friction model. Vehicle Syst Dyn. 2004;42(3):133–173. doi: 10.1080/00423110412331282887
  • Deur J, Ivanovic V, Troulis M, et al. Extensions of the LuGre tyre friction model related to variable slip speed along the contact patch length. Vehicle Syst Dyn. 2005;43(sup1):508–524. doi: 10.1080/00423110500229808
  • Canudas-de-Wit C, Tsiotras P, Velenis E, et al. Dynamic friction models for road/tire longitudinal interaction. Vehicle Syst Dyn. 2003;39(3):189–226. doi: 10.1076/vesd.39.3.189.14152
  • Tsiotras P, Velenis E, Sorine M. A LuGre tire friction model with exact aggregate dynamics. Vehicle Syst Dyn. 2004;42(3):195–210. doi: 10.1080/00423110412331289835
  • Velenis E, Tsiotras P, Canudas-de-Wit C, et al. Dynamic tyre friction models for combined longitudinal and lateral vehicle motion. Vehicle Syst Dyn. 2005;43(1):3–29. doi: 10.1080/00423110412331290464
  • Pacejka HB, Besselink IJM. Magic formula tyre model with transient properties. Vehicle Syst Dyn. 1997;27(sup001):234–249. doi: 10.1080/00423119708969658
  • Besselink IJM, Schmeitz AJC, Pacejka HB. An improved magic formula/swift tyre model that can handle inflation pressure changes. Vehicle Syst Dyn. 2010;48(sup1):337–352. doi: 10.1080/00423111003748088
  • Farroni F. T.R.I.C.K.-tire/road interaction characterization & knowledge – a tool for the evaluation of tire and vehicle performances in outdoor test sessions. Mech Syst Signal Process. 2016;72-73:808–831. doi: 10.1016/j.ymssp.2015.11.019
  • Farroni F, Sakhnevych A, Timpone F. Physical modelling of tire wear for the analysis of the influence of thermal and frictional effects on vehicle performance. Proc Inst Mech Eng L: J Mater: Des Appl. 2017;231(1-2):151–161. doi: 10.1177/1464420716666107
  • Farroni F, Sakhnevych A. Tire multiphysical modeling for the analysis of thermal and wear sensitivity on vehicle objective dynamics and racing performances. Simul Model Pract Theory. 2022;117(1):Article ID 102517. doi:10.1016/j.simpat.2022.102517
  • de Wit CC, Olsson H, Astrom KJ, et al. A new model for control of systems with friction. IEEE Trans Automat Contr. 1995;40(3):419–425. doi: 10.1109/9.376053
  • von Schlippe B, Dietrich R. Das flattern eined bepneuten rades. Bericht 140 der lilienthal gesellschaft. 1941: NACA TM 1365.
  • Segel L. Force and moment response of pneumatic tires to lateral motion inputs. Trans ASME, J Eng Ind. 1966;88(1):37–44. doi: 10.1115/1.3670888
  • Pacejka HB. The wheel shimmy phenomenon: a theoretical and experimental investigation with particular reference to the non-linear problem [doctoral thesis]. Delft; 1966.
  • Gafvert M, Svendenius J. A novel semi-empirical tyre model for combined slips. Vehicle Syst Dyn. 2005;43(5):351–384. doi: 10.1080/00423110412331282896
  • Bai F, Guo K, Lu D. Tire model for turn slip properties. SAE Int J Commer Vehicles. 2013;6(2):353–361. doi: 10.4271/2013-01-2371
  • Xu N, Guo K, Zhang X, et al. An analytical tire model with flexible carcass for combined slips. Math Prob Eng. 2014;2014; doi:10.1155/2014/397538
  • Takács D, Orosz G, Stépán G. Delay effects in shimmy dynamics of wheels with stretched string-like tyres. Eur J Mech A/Solids. 2009;28(3):516–525. doi: 10.1016/j.euromechsol.2008.11.007
  • Takács D, Stépán G. Micro-shimmy of towed structures in experimentally uncharted unstable parameter domain. Vehicle Syst Dyn. 2012;50(11):1613–1630. doi: 10.1080/00423114.2012.691522
  • Takács D, Stépán G, Hogan SJ. Isolated large amplitude periodic motions of towed rigid wheels. Nonlinear Dyn. 2008;52:1-227–34. doi: 10.1007/s11071-007-9253-y
  • Takács D, Stépán G. Experiments on quasiperiodic wheel shimmy. ASME J Comput Nonlinear Dyn. 2009;4(3):Article ID 031007. doi: 10.1115/1.3124786
  • Takács D, Stépán G. Contact patch memory of tyres leading to lateral vibrations of four-wheeled vehicles. Phil Trans R Soc A. 2013;371(1993):Article ID 20120427. doi: 10.1098/rsta.2012.0427
  • Beregi S, Takács D, Stépán G. Tyre induced vibrations of the car–trailer system. J Sound Vib. 2016;362:214–227. doi: 10.1016/j.jsv.2015.09.015
  • Beregi S, Takács D, Hs C. Nonlinear analysis of a shimmying wheel with contact-force characteristics featuring higher-order discontinuities. Nonlinear Dyn. 2017;90(2):877–888. doi: 10.1007/s11071-017-3699-3
  • Beregi S, Takacs D, Gyebroszki G, et al. Theoretical and experimental study on the nonlinear dynamics of wheel-shimmy. Nonlinear Dyn. 2019;98(4):2581–2593. doi: 10.1007/s11071-019-05225-w
  • Beregi S, Takacs D, Stepan G. Bifurcation analysis of wheel shimmy with non-smooth effects and time delay in the tyre–ground contact. Nonlinear Dyn. 2019;98(1):841–858. doi: 10.1007/s11071-019-05123-1
  • Beregi S, Takács D. Analysis of the tyre–road interaction with a non-smooth delayed contact model. Multibody Syst Dyn. 2019;45(2):185–201. doi: 10.1007/s11044-018-09636-2
  • O'Neill A, Gruber P, Watts JF, et al. Predicting tyre behaviour on different road surfaces. In: Klomp M, Bruzelius F, Nielsen J, Hillemyr A, editors. Advances in dynamics of vehicles on roads and tracks; IAVSD. Lecture notes in mechanical engineering. Cham: Springer; 2019. doi: 10.1007/978-3-030-38077-9_215
  • O'Neill A, Prins J, Watts JF, et al. Enhancing brush tyre model accuracy through friction measurements. Vehicle Syst Dyn. 2021;60(6):1–23. doi: 10.1080/00423114.2021.1893766
  • Duvaut G, Lions JL. Inequalities in mechanics and physics. Berlin Heidelberg: Springer-Verlag; 1976. doi: 10.1007/978-3-642-66165-5
  • Kalker JJ. Variational principles of contact elastostatics. J Inst Maths Applics. 1997;20(2):199–219. doi: 10.1093/imamat/20.2.199
  • Persson BNJ. Theory of rubber friction and contact mechanics. J Chem Phys. 2001;115(8):3840–3861. doi: 10.1063/1.1388626
  • Persson BNJ, Albohr O, Tartaglino U, et al. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys: Condens Matter. 2004;17(1):R1–R62. doi:10.1088/0953-8984/17/1/R01
  • Persson BNJ. Contact mechanics for randomly rough surfaces. Surf Sci Rep. 2006;61(4):201–227. doi:10.1016/j.surfrep.2006.04.001
  • Goryacheva IG. Contact mechanics in tribology. 1st ed. Dordrecht: Springer; 1998. doi: 10.1007/978-94-015-9048-8
  • Heinrich G, Klüppel M. Rubber friction, tread deformation and tire traction. Wear. 2008;265(7-8):1052–1060. Available from: https://www.sciencedirect.com/science/article/pii/S0043164808000847. doi: 10.1016/j.wear.2008.02.016
  • Sakhnevych A. Multiphysical MF-based tyre modelling and parametrisation for vehicle setup and control strategies optimisation. Vehicle Syst Dyn. 2021;60(10):3462–3483. doi: 10.1080/00423114.2021.1977833
  • Limebeer DJN, Massaro M. Dynamics and optimal control of road vehicle. Croydon: Oxford University Press; 2018.
  • Romano L, Bruzelius F, Jacobson B. Brush tyre models for large camber angles and steering speeds. Vehicle Syst Dyn. 2022;60(4):1341–1392. doi: 10.1080/00423114.2020.1854320
  • Romano L, Timpone F, Bruzelius F, et al. Analytical results in transient brush tyre models: theory for large camber angles and classic solutions with limited friction. Meccanica. 2022;57(1):165–191. doi: 10.1007/s11012-021-01422-3
  • Romano L, Bruzelius F, Jacobson B. An extended LuGre-brush tyre model for large camber angles and turning speeds. Vehicle Syst Dyn. 2023;61(6):1674–1706. doi: 10.1080/00423114.2022.2086887
  • Romano L, Timpone F, Bruzelius F, et al. Rolling, tilting and spinning spherical wheels: analytical results using the brush theory. Mech Mach Theory. 2022;173:Article ID 104836. doi: 10.1016/j.mechmachtheory.2022.104836
  • Zegelaar PWA. The dynamic response of tyres to brake torque variations and road unevenesses [doctoral thesis]. Delft; 1998. Available from: https://resolver.tudelft.nl/uuid:c623e3fc-b88a-4bec-804a-10bcb7e94124
  • Evans LC. Partial differential equations. 2nd. Providence, Rhode Island: American Mathematical Society; 1996.
  • Ockendon JR, Howison S, Lacey A, et al. Applied partial differential equations. Oxford: Oxford University Press; 2003.
  • Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. Boca Raton–London: Chapman & Hall/CRC Press; 2007.
  • Larsson S, Thomee V. Partial differential equations with numerical methods. 1st ed. Berlin, Heidelberg: Springer; 2009. doi: 10.1007/978-3-540-88706-5
  • Karafyllis I, Krstic M. Input-to-State stability for PDEs. Cham: Springer; 2018.
  • Debnath L, Mikusinski P. Introduction to Hilbert spaces with applications. 3rd. Cambridge, Massachusetts: Elsevier; 2005.