Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 5
346
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A tyre wear modelling approach for vehicle dynamics simulation and control-oriented analyses with application to motorcycles

, &
Pages 1308-1328 | Received 29 Nov 2022, Accepted 12 Jun 2023, Published online: 03 Jul 2023

References

  • Baldwin JM, Bauer DR. Rubber oxidation and tire aging – a review. Rubber Chem Technol. 2008 May;81(2):338–358. doi: 10.5254/1.3548213
  • Grosch K. Rubber abrasion and tire wear. Rubber Chem Technol. 2008;81(3):470–505. doi: 10.5254/1.3548216
  • Le Maitre O, Süssner M, Zarak C. Evaluation of tire wear performance. SAE Technical Paper; 1998.
  • Braghin F, Cheli F, Melzi S, et al. Tyre wear model: validation and sensitivity analysis. Meccanica. 2006;41(2):143–156. doi: 10.1007/s11012-005-1058-9
  • Braghin F, Cheli F, Melzi S, et al. Sensitivity analysis of the tyre design parameters with respect to tyre wear using a physical tyre model. Vehicle Syst Dyn. 2005;43(sup1):102–110. doi: 10.1080/00423110500109034
  • Lupker H, Cheli F, Braghin F, et al. Numerical prediction of car tire wear. Tire Sci Technol. 2003;32(3):164–186. doi: 10.2346/1.2186780
  • Kahms S, Wangenheim M. Experimental investigation and simulation of aircraft tire wear. Tire Sci Technol. 2020;49(1):55–74. doi: 10.2346/tire.20.180201
  • Nguyen V, Zheng D, Schmerwitz F, et al. An advanced abrasion model for tire wear. Wear. 2018;396:75–85. doi: 10.1016/j.wear.2017.11.009
  • Chang J, Chenyuan H, Xiaoxiong J. FE simulation of tire wear with complicated tread pattern. Procedia Eng. 2011;15:5015–5019. doi: 10.1016/j.proeng.2011.08.932
  • Cho J, Jung B. Prediction of tread pattern wear by an explicit finite element model. Tire Sci Technol. 2007;35(4):276–299. doi: 10.2346/1.2804913
  • Zheng D. Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci Technol. 2003;31(3):189–202. doi: 10.2346/1.2135268
  • D'Avico L, Tanelli M, Savaresi SM. Tire-wear control in aircraft via active braking. IEEE Trans Control Syst Technol. 2021;29(3):984–995. doi: 10.1109/TCST.2020.2983375
  • Tandy D, Pascarella R, Neal J, et al. Effect of tire wear on tire force and moment characteristics. Tire Sci Technol. 2010;38(1):47–79. doi: 10.2346/1.3298680
  • Wright KRS, Botha TR, Els PS. Effects of age and wear on the stiffness and friction properties of an suv tyre. J Terramech. 2019;84:21–30. doi: 10.1016/j.jterra.2019.04.001
  • Singh KB, Sivaramakrishnan S. An adaptive tire model for enhanced vehicle control systems. SAE Int J Passenger Cars-Mechanical Syst. 2015;8:128–145. doi: 10.4271/2015-01-1521
  • Farroni F, Sakhnevych A, Timpone F. Physical modelling of tire wear for the analysis of the influence of thermal and frictional effects on vehicle performance. Proc Inst Mech Eng, Part L: Journal of Materials: Design and Applications. 2017;231(1-2):151–161. doi: 10.1177/1464420716666107
  • West WJ, Limebeer DJN. Optimal tyre management for a high-performance race car. Vehicle Syst Dyn. 2022;60(1):1–19. doi: 10.1080/00423114.2020.1802047
  • Mastinu G, Gaiazzi S, Montanaro F, et al. A semi-analytical tyre model for steady-and transient-state simulations. Vehicle Syst Dyn. 1997;27(S1):2–21. doi: 10.1080/00423119708969641
  • Pacejka HB. Tire and vehicle dynamics. 3rd ed. Oxford: Butterworth-Heinemann; 2012.
  • Pacejka HB, Besselink IJM. Magic formula tyre model with transient properties. Vehicle Syst Dyn. 1997;27(sup001):234–249. doi: 10.1080/00423119708969658
  • Li Y, Zuo S, Lei L, et al. Analysis of impact factors of tire wear. J Vibration Control. 2012;18(6):833–840. doi: 10.1177/1077546311411756
  • Smith ND. Understanding parameters influencing tire modeling. Formula SAE Platform, Department of Mechanical Engineering, Colorado State University, 2004.
  • Pacejka HB, Bakker E. The magic formula tyre model. Vehicle Syst Dyn. 1992;21(sup001):1–18. doi: 10.1080/00423119208969994
  • Besselink IJ, Schmeitz AJ, Pacejka HB. An improved magic formula/swift tyre model that can handle inflation pressure changes. Vehicle Syst Dyn. 2010;48(sup1):337–352. doi: 10.1080/00423111003748088
  • Cossalter V, Doria A, Giolo E, et al. Identification of the characteristics of motorcycle and scooter tyres in the presence of large variations in inflation pressure. Vehicle Syst Dyn. 2014;52(10):1333–1354. doi: 10.1080/00423114.2014.940981
  • Becker C, Els S. Effect of surface roughness on tyre characteristics. J Terramech. 2022;102:27–48. doi: 10.1016/j.jterra.2022.04.003
  • Capra D, Farroni F, Sakhnevych A, et al. On the implementation of an innovative temperature-sensitive version of pacejka's mf in vehicle dynamics simulations. In: Proceedings of XXIV AIMETA Conference 2019; Rome, Italy, Springer; 2019. p. 1084–1092.
  • Farroni F, Giordano D, Russo M, et al.Thermo racing tyre a physical model to predict the tyre temperature distribution. Meccanica. 2014;49(3):707–723. doi: 10.1007/s11012-013-9821-9
  • Tremlett AJ, Limebeer DJN. Optimal tyre usage for a formula one car. Vehicle Syst Dyn. 2016;54(10):1448–1473. doi: 10.1080/00423114.2016.1213861
  • Farroni F, Mancinelli N, Timpone F. A real-time thermal model for the analysis of tire/road interaction in motorcycle applications. Applied Sciences. 2020;10(5):1604. doi: 10.3390/app10051604
  • Kemp I. Influence of front tyre wear on wet braking performance of medium trucks. SAE Trans. 1988;97:897–905. doi: 10.4271/881873
  • De Vries E, Pacejka H. Motorcycle tyre measurements and models. Vehicle Syst Dyn. 1998;29(sup1):280–298. doi: 10.1080/00423119808969565
  • Lot R. A motorcycle tire model for dynamic simulations: theoretical and experimental aspects. Meccanica. 2004;39(3):207–220. doi: 10.1023/B:MECC.0000022842.12077.5c
  • Cossalter V. Motorcycle dynamics. 2nd ed. Raleigh: Lulu.com; 2006.
  • Blundell M, Harty D. The multibody systems approach to vehicle dynamics. 2nd ed. Oxford: Butterworth-Heinemann; 2014.
  • Tezuka Y, Ishii H, Kiyota S. Application of the magic formula tire model to motorcycle maneuverability analysis. JSAE Rev. 2001;22(3):305–310. doi: 10.1016/S0389-4304(01)00113-8
  • Gelmini S, Centurioni M, Pivaro N, et al. A data-driven, vehicle-independent usage monitoring system for shared fleets: assessing vertical and longitudinal wear. IEEE Vehicular Technol Mag. 2022;17(1):85–93. doi: 10.1109/MVT.2021.3122866
  • Colombo T, Panzani G, Savaresi SM, et al. Absolute driving style estimation for ground vehicles. In: 2017 IEEE Conference on Control Technology and Applications (CCTA). Maui, HI: IEEE; 2017. p. 2196–2201.
  • Kalabić U, Chakrabarty A, Quirynen R, et al. Learning autonomous vehicle passengers' preferred driving styles using g-g plots and haptic feedback. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland: IEEE; 2019. p. 4012–4017.
  • Andersson-Sköld Y, Johannesson M, Gustafsson M, et al. Microplastics from tyre and road wear a literature review. Swedish National Road and Transport Research Institute (VTI); 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.