Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
1,580
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear model predictive control for yaw rate and body motion control through semi-active and active suspensions

, , ORCID Icon, & ORCID Icon
Pages 1587-1620 | Received 16 Mar 2023, Accepted 13 Aug 2023, Published online: 24 Sep 2023

References

  • Ueno K, Fujibayashi T, Sasaki M, et al. Vehicle control techniques for safety, environmental performance, and ride comfort. Hitachi Rev. 2018;67(1):64–71.
  • Saveresi SM, Poussot-Vassal C, Spelta C, et al. Semi-active suspension control for vehicles. Amsterdam: Elsevier; 2010.
  • Tseng HE, Hrovat D. State of the art survey: active and semi-active suspension control. Veh: Syst Dyn. 2015;53(7):1034–1062. doi:10.1080/00423114.2015.1037313.
  • Ricco M, Zanchetta M, Rizzo GC, et al. On the design of yaw rate control via variable front-to-total anti-roll moment distribution. IEEE Trans Veh Technol. 2020;69(2):1388–1403. doi:10.1109/TVT.2019.2955902.
  • Yao J, Taheri S, Tian S, et al. A novel semi-active suspension design based on decoupling skyhook control. J Vibroeng. 2014;16(3):1318–1325.
  • Kadir ZA, Hudha K, Jamaluddin H, et al. Active roll control suspension system for improving dynamics performance of passenger vehicle. Proc Int Conf Model Identif Control. 2011: 492–497.
  • Fang Z, Shu W, Du D, et al. Semi-active suspension of a full-vehicle model based on double-loop control. Procedia Eng. 2011;16:428–437. doi:10.1016/j.proeng.2011.08.1107.
  • Samin PM, Jamaluddin HJ, Rahman RA, et al. Semi-active suspension for ride improvement using stability augmentation system control algorithm. J Mek. 2008;26:86–95.
  • Ikenaga S, Lewis FL, Campos J, et al. Active suspension control of ground vehicle based on a full-vehicle model. Am Control Conf. 2000;6:4019–4024.
  • Chokor A, Talj R, Doumiati M, et al. A global chassis control system involving active suspensions, direct Yaw control and active front steering. IFAC-PapersOnLine. 2019;52(5):444–451. doi:10.1016/j.ifacol.2019.09.071.
  • Na J, Huang Y, Pei Q, et al. Active suspension control of full-car systems without function approximation. IEEE Trans Mechatron. 2020;25(2):779–791. doi:10.1109/TMECH.2019.2962602.
  • Lindvai-Soos D, Horn M. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry. Veh Syst Dyn. 2018;56(7):1002–1027. doi:10.1080/00423114.2017.1378818.
  • Fleps-Dezasse M, Büntze T, Svaricek F, et al. LPV feedforward control of semi-active suspensions for improved roll stability. Contr Eng Pract. 2018;78:1–11. doi:10.1016/j.conengprac.2018.06.007.
  • Soltani A, Bagheri A, Azadi S. Integrated vehicle dynamics control using semi-active suspension and active braking systems. Proc Inst Mech Eng Part K: J Multi-Body Dyn. 2017;232(3):314–329.doi:10.1177/146441931773318.
  • Dahmani H, Pagès O, El Hajjaji A. Observer-based state feedback control for vehicle chassis stability in critical situations. IEEE Trans Contr Syst Tech. 2016;24(2):636–643.doi:10.1109/TCST.2015.2438191.
  • Zhao J, Wong PK, Ma X, et al. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy. Veh Syst Dyn. 2017;55(1):72–103. doi:10.1080/00423114.2016.1245424.
  • Chokor A, Talj R, Doumiati M, et al. Effect of roll motion control on vehicle lateral stability and avoidance. Am Control Conf. 2020: 4868–4875.
  • Cooper N, Crolla D, Levesley M. Integration of active suspension and active driveline to ensure stability while improving vehicle dynamics. SAE Tech. Paper 2005-01-0414. 2005.
  • Sorniotti A, D’Alfio N. Vehicle dynamics simulation to develop an active roll control system. SAE Tech Paper 2007-01-0828. 2007.
  • Her H, Suh J, Yi K. Integrated control of the differential braking, the suspension damping force and the active roll moment for improvement in the agility and the stability. Proc IMechE Part D: J Autom Eng. 2015;229(9):1145–1157. doi:10.1177/0954407014550502
  • Her H, Koh Y, Joa E, et al. An integrated control of differential braking, front/rear traction, and active roll moment for limit handling performance. IEEE Trans Veh Tech. 2016;65(6):1071–1078.
  • Termous H, Shraim H, Talj R, et al. Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement. Veh Syst Dyn. 2019;57(10):1494–1529. doi:10.1080/00423114.2018.1521001.
  • Yan M, Pi D, Li Y, et al. The design of anti-roll moment distribution for dual-channel active stabilizer bar system. Chin Control Decis Conf. 2018: 6301–6308.
  • Xu Y, Ahmadian M, Sun R. Improving vehicle lateral stability based on variable stiffness and damping suspension system via MR damper. IEEE Trans Veh Tech. 2014;63(3):1071–1078. doi:10.1109/TVT.2013.2282824.
  • Bodie MO, Hac A. Closed loop yaw control of vehicles using magneto-rheological dampers. SAE Tech Paper 2000-01-0107. 2000.
  • Lu SB, Li YN, Choi SB, et al. Integrated control on MR vehicle suspension system associated with braking and steering control. Veh Syst Dyn. 2011;49(1-2):361–380. doi:10.1080/00423110903401889.
  • Williams DE, Haddad WM. Nonlinear control of roll moment distribution to influence vehicle yaw characteristics. IEEE Trans Control Syst Technol. 1995;3(1):110–116. doi:10.1109/87.370716.
  • Williams DE, Haddad WM. Active suspension control to improve vehicle ride and handling. Veh Syst Dyn. 1997;28(1):1–24. doi:10.1080/00423119708969346.
  • Yao J, Lv G, Qv M, et al. Lateral stability control based on the roll moment distribution using a semiactive suspension. Proc IMechE Part D: J Automob Eng. 2017;231(12):1627–1639. doi:10.1177/0954407016681386.
  • Cho W, Suh J, You SH. Integrated motion control using a semi-active damper system to improve Yaw-roll-pitch motion of a vehicle. IEEE Access. 2021;9:52464–52473. doi:10.1109/ACCESS.2021.3070366.
  • Wang J, Wilson DA, Xu W, et al. Integrated vehicle ride and steady-state handling control via active suspensions. Int J Veh Des. 2006;42(3-4):306–327. doi:10.1504/IJVD.2006.010435.
  • Wang J, Wilson DA, Xu W, et al. Active suspension control to improve vehicle ride and steady-state handling. 44th IEEE Conference on Decision and Control, and European Control Conference. 2005.
  • Lakehal-Ayat M, Diop S, Fenaux E. An improved active suspension yaw rate control. Am Control Conf. 2002.
  • Ricco M, Percolla A, Rizzo GC, et al. On the model-based design of front-to-total anti-roll moment distribution controllers for yaw rate tracking. Veh Syst Dyn. 2020;60(2):569–596. doi:10.1080/00423114.2020.1825753.
  • Houska B, Ferrau HJ, Diehl M. An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica (Oxf). 2011;47(10):2279–2285. doi:10.1016/j.automatica.2011.08.020.
  • Nguyen M, Canale M, Sename O, et al. A model predictive control approach for semi-active suspension control problem of a full car. IEEE 55th Conference on Decision and Control. 2016.
  • Shao S, Zhou H, Liu H. Distributed model predictive control and implementation for vehicle active suspensions. IFAC-PapersOnline. 2018;51:961–966. doi:10.1016/j.ifacol.2018.10.056.
  • Ma X, Wong PK, Zhao J, et al. Design and testing of a nonlinear model predictive controller for ride height control of automotive semi-active air suspension systems. IEEE Access. 2018;6:63777–63793. doi:10.1109/ACCESS.2018.2876496.
  • Gohrle C, Wagner A, Schindler A, et al. Active suspension controller using MPC based on a full-car model with preview information. Am Control Conf. 2012.
  • Gohrle C, Schindler A, Wagner A, et al. Design and vehicle implementation of preview active suspension controllers. IEEE Trans Contr Sys Tech. 2014;22(3):1135–1142. doi:10.1109/TCST.2013.2272342.
  • Mai VN, Yoon DS, Choi SB, et al. Explicit model predictive control of semi-active suspension systems with magneto-rheological dampers subject to input constraints. J Intell Material Syst Struct. 2020;31:1157–1170. doi:10.1177/1045389X20914404
  • Theunissen J, Sorniotti A, Gruber P, et al. Regionless explicit model predictive control of active suspension systems with preview. IEEE Trans Ind Electr. 2020;67(6). doi:10.1109/TIE.2019.2926056.
  • Song S, Wang J. Incremental model predictive control of active suspensions with estimated road preview information from a lead vehicle. J Dyn Syst Meas Contr. 2020;12:142–150. doi:10.1115/1.4047962.
  • Jurisch M. Vertical trajectory planning: an optimal control approach for active suspension systems in autonomous vehicles. Veh Syst Dyn. 2022;60(11):3788–3809. doi:10.1080/00423114.2021.1979238.
  • Zhu Q, Ayalew B. Predictive roll handling and ride control of vehicles via active suspensions. Am Control Conf. 2014: 2102–2107.
  • Adireddy G, Shim T. MPC based integrated chassis control to enhance vehicle handling considering roll stability. ASME Dyn Syst Control Conf. 2011;2:877–884.
  • Dalboni M, Tavernini D, Montanaro U, et al. Nonlinear model predictive control for integrated energy-efficient torque-vectoring and anti-roll moment distribution. IEEE/ASME Trans Mechatron. 2021;26(3):1212–1224. doi:10.1109/TMECH.2021.3073476.
  • Chang S, Lee B, Park Y, et al. Integrated chassis control for improving on-center handling behavior. SAE Int J Passeng Cars – Mech Syst. 2014;7(3):1002–1008. doi:10.4271/2014-01-0139.
  • Wang Q, Zhao Y, Lin F, et al. Integrated control for distributed in-wheel motor drive electric vehicle based on state estimations and nonlinear MPC. Proc IMechE Part D: J Autom Eng. 2022;236(5):893–906. doi:10.1177/09544070211030444.
  • Monroe Intelligent Suspension Driv Tenneco Automotive BVBA. https://www.monroeintelligentsuspension.com/electronic/pages/products.php, last accessed on 7 November 2022.
  • Van Zanten AT. Bosch ESP systems: 5 years of experience. SAE Trans: J Pass Cars. 2000;109(7):428–436. doi:10.4271/2000-01-1633.
  • Shino M, Nagai M. Yaw-moment control of electric vehicle for improving handling and stability. JSAE Rev. 2001;22(4):473–480. doi:10.1016/S0389-4304(01)00130-8.
  • Koibuchi K. Behavior control system of vehicle distinctive of oversteered and understeered conditions. Patent US5702165A. 1997.
  • https://www.avl.com/documents/10138/2095827/AVL+VSM+4%E2%84%A2+-+Solution+Brochure, last accessed on 18 Aug. 2023.
  • Armengaud E, et al. EVC1000–integrated corner solution for innovative electric vehicles. 8th Transp Res Arena (TRA). 2020.
  • Metzler M, Tavernini D, Gruber P, et al. On prediction model fidelity in explicit nonlinear model predictive vehicle stability control. IEEE Trans Contr Sys Technol. 2021;29(5):1964–1980. doi:10.1109/TCST.2020.3012683.
  • Dixon JC. Suspension geometry and computation. Chichester: Wiley; 2009.
  • Gerrard M. Roll centres and jacking forces in independent suspensions – A first principles explanation and a designer’s toolkit. SAE Tech Paper 1999-01-0046. 1999.
  • Pacejka H. Tyre and vehicle dynamics. 3rd ed. Amsterdam: Elsevier; 2012.
  • Antonov S, Fehn A, Kugi A. Unscented Kalman filter for vehicle state estimation. Veh: Syst Dyn. 2011;49(9):1497–1520. doi:10.1080/00423114.2010.527994.
  • Mazzilli V, Ivone D, De Pinto S, et al. On the benefit of smart tyre technology on vehicle state estimation. Veh Syst Dyn. 2022;60(11):3694–3719. doi:10.1080/00423114.2021.1976414.
  • Chen BC, Hsieh FC. Sideslip angle estimation using extended Kalman filter. Veh Syst Dyn. 2008;46:353–364. doi:10.1080/00423110801958550.
  • Chindamo D, Lenzo B, Gadola M. On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations. App Sc. 2018;8(3):1–20. doi:10.3390/app8030355.
  • Melzi S, Sabbioni E. On the vehicle sideslip angle estimation through neural networks: numerical and experimental results. Mech Syst Sign Proc. 2011;25(6):2005–2019. doi:10.1016/j.ymssp.2010.10.015.
  • Zhang B, Du H, Lam J, et al. A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle. IEEE Trans Ind Elec. 2016;63(7):4357–4366. doi:10.1109/TIE.2016.2544244.
  • Grüne L, Pannek J. Nonlinear model predictive control. London, Dordrecht Heidelberg, New York: Springer; 2011.
  • Ferreau HJ. qpOASES User’s Manual, April 2017, https://www.coin-or.org/qpOASES/doc/3.2/manual.pdf, last accessed on 06 June 2023.