278
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of confinement on pressure and heat transfer distribution by impinging an air jet from a piccolo tube on a concave surface

ORCID Icon, &
Pages 1-19 | Received 21 May 2020, Accepted 10 Mar 2022, Published online: 02 Mar 2023

References

  • Abe, K., T. Kondoh, and Y. Nagano. 1994. “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flow I-Flow Field Calculation.” International Journal of Heat and Mass Transfer 37 (1): 139–151. doi:10.1016/0017-9310(94)90168-6.
  • Adimurthy, M., and Vadiraj v. Katti. 2017. “Local Distribution of Wall Static Pressure and Heat Transfer on a Smooth Flat Plate Impinged by a Slot Air Jet.” Heat and Mass Transfer 53: 611–623. doi:10.1007/s00231-016-1847-9.
  • Brown, T. 1968. Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils. American Institute of Aeronautics and Astronautics (AIAA). doi:10.2514/6.1968-564
  • Camerlengo, G., D. Borello, A. Salvagni, and J. Sesterhenn. 2019. “Effects of Wall Curvature on the Dynamics of an Impinging Jet and Resulting Heat Transfer.” In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 141, edited by R. King, 355–366. Cham: Springer Verlag. doi:10.1007/978-3-319-98177-2_22.
  • Churchill, Stuart W, and Humbert H S Chu. 1975 “Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder.” International Journal of Heat Mass Transfer 18 (9): 1049–1053. doi:10.1016/0017-9310(75)90222-7.
  • Colucci, D. W., and R. Viskanta. 1996. “Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet.” Experimental Thermal and Fluid Science 13 (1): 71–80. doi:10.1016/0894-1777(96)00015-5.
  • Cornaro, C., A. S. Fleischer, and R. J. Goldstein. 1999. Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces. www.elsevier.nl/locate/etfs.
  • Gao, N., and D. Ewing. 2006. “Investigation of the Effect of Confinement on the Heat Transfer to Round Impinging Jets Exiting a Long Pipe.” International Journal of Heat and Fluid Flow 27 (1): 33–41. doi:10.1016/j.ijheatfluidflow.2005.06.002.
  • Hadipour, Amirhosein, and Mehran Rajabi Zargarabadi. 2018. “Heat Transfer and Flow Characteristics of Impinging Jet on a Concave Surface at Small Nozzle to Surface Distances.” Applied Thermal Engineering 138: 534–541. doi:10.1016/j.applthermaleng.2018.04.086.
  • Hanchinal, Anilkumar M., and Vadiral v. Katti. 2019. “Effect of Orifice Geometry and Orifice-to-Test Section Spacing on Distribution of Wall Static Pressure on a Convex Surface.” Journal of Mechanical Engineering and Sciences 13 (2): 4835–4845. doi:10.15282/jmes.13.2.2019.05.0402.
  • Hanchinal, Anilkumar M., and Vadiral v. Katti. 2020. “Impingement of Coaxial Jet on Convex Element for Confined and Unconfined Flow.” Journal of Mechanical Engineering and Sciences 14 (2): 6652–6662. doi:10.15282/jmes.14.2.2020.09.0521.
  • Hosseinalipour, S. M., and A. S. Mujumdar. 1995. “Comparative Evaluation of Different Turbulence Models for Confined Impinging and Opposing Jet Flows.” Numerical Heat Transfer; Part A: Applications 28 (6): 647–666. doi:10.1080/10407789508913767.
  • Katti, Vadiraj, S. Sudheer, and S. v. Prabhu. 2013 April. “Pressure Distribution on a Semi- Circular Concave Surface Impinged by a Single Row of Circular Jets.” Experimental Thermal and Fluid Science 46: 162–174. doi:10.1016/j.expthermflusci.2012.12.008.
  • Kessel, W. 2002. “Measurement Uncertainty According to ISO/BIPM-GUM.” Thermochimica Acta 382 (1): 1–16. doi:10.1016/S0040-6031(01)00729-8.
  • Kline, S. J., and F. A. McClintock. 1953. “Describing Uncertainties in Single Sample Experiments.” Mechanical Engineering 75 (1): 3–8.
  • Kumar, B. V. N. Rama, and B. V. S. S. S. Prasad. 2008. “Computational Flow and Heat Transfer of a Row of Circular Jets Impinging on a Concave Surface.” Heat and Mass Transfer/Waerme- Und Stoffuebertragung 44 (6): 667–678. doi:10.1007/s00231-007-0274-3.
  • Lee, D. H., Y. S. Chung, and S. Y. Won. 1999. “The Effect of Concave Surface Curvature On Heat Transfer from a Fully Developed Round Impinging Jet.” International Journal of Heat Mass Transfer 42 (13): 2489–2497. doi:10.1016/S0017-9310(98)00318-4.
  • Mathew, V. K., and Tapano Kumar Hotta. 2020. “Experiment and Numerical Investigation on Optimal Distribution of Discrete ICs for Different Orientation of Substrate Board.” International Journal of Ambient Energy. doi:10.1080/01430750.2020.1712255.
  • Moffat, Robert J. 1988. “Describing the Uncertainties in Experimental Results.” Experimental Thermal and Fluid Science 1: 3–17. doi:10.1016/0894-1777(88)90043-X.
  • Pachpute, Sharad, and B. Premachandran. 2020. “Turbulent Multi-Jet Impingement Cooling of a Heated Circular Cylinder.” International Journal of Thermal Sciences 148. doi:10.1016/j.ijthermalsci.2019.106167.
  • Patil, Naveen G., M. Adimurthy, Vadiraj V. Katti, Mohemmedtayab A. Mujawar, and S. A. Biradar. 2020. “Influence of Spent Air Confinement on Pressure Distribution Over a Flat Plate Impinged by an Array of Jets.” International Journal of Ambient Energy, 1–8. doi:10.1080/01430750.2020.1752798.
  • Patil, Vijay S., and R. P. Vedula. 2018 April. “Local Heat Transfer for Jet Impingement onto a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects.” Experimental Thermal and Fluid Science 92: 375–389. doi:10.1016/j.expthermflusci.2017.08.002.
  • Poitras, G. J., A. Babineau, G. Roy, and L. E. Brizzi. 2017. “Aerodynamic and Heat Transfer Analysis of a Impinging Jet on a Concave Surface.” International Journal of Thermal Sciences 114: 184–195. doi:10.1016/j.ijthermalsci.2016.12.019.
  • Salcedo, Saulo A. G., Adaiana F. Gomes da Silva, and Cláudia R. Andrade. 2018. “Turbulent Impingement Jet Heat Transfer on Concave Surfaces for Aeronautical Applications.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (11). doi:10.1007/s40430-018-1465-1.
  • Shekhar, Chandra, and Koichi Nishino. 2019 February. “Turbulence Characteristics of Radially- Confined Impinging Jet Flows.” International Journal of Heat and Fluid Flow 75: 278–299. doi:10.1016/j.ijheatfluidflow.2018.10.002.
  • Singh, Alankrita, and B. V. S. S. S. Prasad. 2019. “Influence of Novel Equilaterally Staggered Jet Impingement Over a Concave Surface at Fixed Pumping Power.” Applied Thermal Engineering 148: 609–619. doi:10.1016/j.applthermaleng.2018.11.034.
  • Singh, Dushyant, B. Premachandran, and Sangeeta Kohli. 2017. “Double Circular Air Jet Impingement Cooling of a Heated Circular Cylinder.” International Journal of Heat and Mass Transfer 109: 619–646. doi:10.1016/j.ijheatmasstransfer.2017.02.035.
  • Tabakoff, W., and W. Clevenger. 1972. “Gas Turbine Blade Heat Transfer Augmentation by Impingement of Air Jets Having Various Configurations.” ASME Journal of Engineering for Power 94 (1): 51–58. doi:10.1115/1.3445620.
  • Yang, B., S. Chang, H. Wu, Y. Zhao, and M. Leng. 2017. “Experimental and Numerical Investigation of Heat Transfer in an Array of Impingement Jets on a Concave Surface.” Applied Thermal Engineering 127: 473–483. doi:10.1016/j.applthermaleng.2017.07.190.
  • Zhou, Ying, Guiping Lin, Xueqin Bu, Lizhan Bai, and Dongsheng Wen. 2017. “Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces.” Chinese Journal of Aeronautics 30 (2): 586–594. doi:10.1016/j.cja.2016.12.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.