141
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A systematic study of operational parameters on performance and ethanol crossover of direct ethanol fuel cell by design of experiment

ORCID Icon, &
Pages 234-245 | Received 18 Apr 2022, Accepted 28 Aug 2022, Published online: 11 Oct 2022

References

  • Abdullah, S., S. K. Kamarudin, U. A. Hasran, M. S. Masdar, and W. R. W. Daud. 2014. “Modeling and Simulation of a Direct Ethanol Fuel Cell: An Overview.” Journal of Power Sources 262: 401–406. doi:10.1016/j.jpowsour.2014.03.105.
  • Abdullah, S., S. K. Kamarudin, U. A. Hasran, M. S. Masdar, and W. R. W. Daud. 2015. “Development of a Conceptual Design Model of a Direct Ethanol Fuel Cell (DEFC).” International Journal of Hydrogen Energy 40: 11943–11948. doi:10.1016/j.ijhydene.2015.06.070.
  • Alzate, V., K. Fatih, and H. Wang. 2011. “Effect of Operating Parameters and Anode Diffusion Layer on the Direct Ethanol Fuel Cell Performance.” Journal of Power Sources 196: 10625–10631. doi:10.1016/j.jpowsour.2011.08.080.
  • An, L., T. S. Zhao, and Y. S. Li. 2015. “Carbon-neutral Sustainable Energy Technology: Direct Ethanol Fuel Cells.” Renewable and Sustainable Energy Reviews 50: 1462–1468. doi:10.1016/j.rser.2015.05.074.
  • Antolini, E. 2007. “Catalysts for Direct Ethanol Fuel Cells.” Journal of Power Sources 170: 1–12. doi:10.1016/j.jpowsour.2007.04.009.
  • Azam, A. M. I. N., S. H. Lee, M. S. Masdar, A. M. Zainoodin, and S. K. Kamarudin. 2019. “Parametric Study on Direct Ethanol Fuel Cell (DEFC) Performance and Fuel Crossover.” International Journal of Hydrogen Energy 44: 8566–8574. doi:10.1016/j.ijhydene.2018.08.121.
  • Badwal, S. P. S., S. Giddey, A. Kulkarni, J. Goel, and S. Basu. 2015. “Direct Ethanol Fuel Cells for Transport and Stationary Applications – A Comprehensive Review.” Applied Energy 145: 80–103. doi:10.1016/j.apenergy.2015.02.002.
  • Balu, P., P. Saravanan, and V. Jayaseelan. 2021. “Effect of Ceramic Coating on the Performance, Emission, and Combustion Characteristics of Ethanol DI Diesel Engine.” Materials Today: Proceedings 39 (4): 1259–1264. doi:10.1016/j.matpr.2020.04.160.
  • Basu, S., A. Agarwal, and H. Pramanik. 2008. “Improvement in Performance of a Direct Ethanol Fuel Cell: Effect of Sulfuric Acid and Ni-mesh.” Electrochemistry Communications 10: 1254–1257. doi:10.1016/j.elecom.2008.05.042.
  • Charbonné, C., M.-L. Dhuitte, K. Bouziane, D. Chamoret, D. Candusso, and Y. Meyer. 2021. “Design of Experiments on the Effects of Linear and Hyperelastic Constitutive Models and Geometric Parameters on Polymer Electrolyte Fuel Cell Mechanical and Electrical Behaviour.” International Journal of Hydrogen Energy 46: 13775–13790. doi:10.1016/j.ijhydene.2021.02.122.
  • Charoen, K., C. Prapainainar, P. Sureeyatanapas, T. Suwannaphisit, K. Wongamornpitak, P. Kongkachuichay, S. M. Holmes, and P. Prapainainar. 2017. “Application of Response Surface Methodology to Optimize Direct Alcohol Fuel Cell Power Density for Greener Energy Production.” Journal of Cleaner Production 142 (3): 1309–1320. doi:10.1016/j.jclepro.2016.09.059.
  • Cheng, S. J., J. M. Miao, and S. J. Wu. 2012. “Investigating the Effects of Operational Factors on PEMFC Performance Based on CFD Simulations Using a Three-Level Full-Factorial Design.” Renewable Energy 39: 250–260. doi:10.1016/j.renene.2011.08.009.
  • Choudhary, A. K., and H. Pramanik. 2020. “Addition of Rhenium (Re) to Pt-Ru/f-MWCNT Anode Electrocatalysts for Enhancement of Ethanol Electrooxidation in Half Cell and Single Direct Ethanol Fuel Cell.” International Journal of Hydrogen Energy 45 (24): 13300–13321. doi:10.1016/j.ijhydene.2020.03.044.
  • Choudhary, A. K., and H. Pramanik. 2021. “Optimization and Validation of Process Parameters Via RSM for Minimizing Use of Resources to Generate Electricity from a DEFC.” International Journal of Energy Research 45 (14): 20413–20429. doi:10.1002/er.7126.
  • Chu, Y. H., and Y. G. Shul. 2010. “Combinatorial Investigation of Pt-Ru-Sn Alloys as an Anode Electrocatalysts for Direct Alcohol Fuel Cells.” International Journal of Hydrogen Energy 35 (20): 11261–11270. doi:10.1016/j.ijhydene.2010.07.062.
  • Colmati, F., M.M. Magalhaes, R. Sousa, E.G. Ciapina, and E.R. Gonzalez. 2019. “Direct Ethanol Fuel Cells: The Influence of Structural and Electronic Effects on Pt-Sn/C Electrocatalysts.” International Journal of Hydrogen Energy 44 (54): 28812–28820. doi:10.1016/j.ijhydene.2019.09.056.
  • Ekdharmasuit, P., A. Therdthianwong, and S. Therdthianwong. 2014. “The Role of an Anode Microporous Layer in Direct Ethanol Fuel Cells at Different Ethanol Concentrations.” International Journal of Hydrogen Energy 39: 1775–1782. doi:10.1016/j.ijhydene.2013.11.051.
  • Flick, S., Schwager, M., McCarthy, E., Merida, W. 2014. “Designed Experiments to Characterize PEMFC Material Properties and Performance.” Applied Energy 129: 135-146. doi:10.1016/j.apenergy.2014.05.009.
  • Gauthier, E., and J. B. Benziger. 2014. “Gas Management and Multiphase Flow in Direct Alcohol Fuel Cells.” Electrochimica Acta 128: 238–247. doi:10.1016/j.electacta.2013.09.047.
  • Guvelioglu, G. H., and H. G. Stenger. 2006. “Main and Interaction Effects of PEM Fuel Cell Design Parameters.” Journal of Power Sources 156: 424–433. doi:10.1016/j.jpowsour.2005.06.009.
  • Heysiattalab, S., M. Shakeri, M. Safari, and M. M. Keikha. 2011. “Investigation of key Parameters Influence on Performance of Direct Ethanol Fuel Cell.” Journal of Industrial and Engineering Chemistry 17: 727–729. doi:10.1016/j.jiec.2011.05.037.
  • Hu, X., Lin, C., Wei, L., Hong, C., Zhang, Y., Zhuang, N. 2016. “High Electrocatalyttic Performance of Graphene Nanoribbon Supported PtAu Nanoalloy for Direct Ethanol Fuel Cell and Theoretical Analysis of Anti-CO Poisoning.” Electrochimica Acta 187: 560–566. doi:10.1016/j.electacta.2015.11.100.
  • Ishitobi, H., Ino, Y., and Nakagawa, N. 2017. “Anode Catalyst with Enhanced Ethanol Electrooxidation Activity by Effective Interaction Between Pt-Sn-SiO2 for a Direct Ethanol Fuel Cell.” International Journal of Hydrogen Energy 42: 26897-26904. doi:10.1016/j.ijhydene.2017.09.017.
  • Kamarudin, M. Z. F., S. K. Kamarudin, M. S. Masdar, and W. R. W. Daud. 2013. “Review: Direct Ethanol Fuel Cells.” International Journal of Hydrogen Energy 38: 9438–9453. doi:10.1016/j.ijhydene.2012.07.059.
  • Karanfil, G. 2019. “Importance and Applications of DOE/Optimization Methods in PEM Fuel Cells: A Review.” International Journal of Energy Research 44 (1): 4–25. doi:10.1002/er.4815.
  • Lai, S. C. S., S. E. F. Kleyn, V. Rosca, and M. T. M. Koper. 2008. “Mechanism of the Dissociation and Electrooxidation of Ethanol and Acetaldehyde on Platinum as Studied by SERS.” The Journal of Physical Chemistry C 112: 19080–19087. doi:10.1021/jp807350h.
  • Li, G., and P.G. Pickup. 2006. “Analysis of Performance Losses of Direct Ethanol Fuel Cells with the Aid of a Reference Electrode.” Journal of Power Sources 161: 256–263. doi:10.1016/j.jpowsour.2006.03.071.
  • Mackie, D. M., S. Liu, M. Benyamin, R. Ganguli, and J. J. Sumner. 2013. “Direct Utilization of Fermentation Products in an Alcohol Fuel Cell.” Journal of Power Sources 232: 34–41. doi:10.1016/j.jpowsour.2013.01.077.
  • Matos, B. R., C. A. Goulart, B. Tosco, J. S. da Silva, R. A. Isidoro, E. I. Santiago, et al. 2020. “Properties and DEFC Tests of Nafion – Functionalized Titanated Nanotubes Composite Membranes Prepared by Melt-Extrusion.” Journal of Membrane Science 604: 118042. doi:10.1016/j.memsci.2020.118042.
  • Mehrpooya, M., G. Nouri, M. H. Eikani, N. Khandan, and A. Hazinezhad. 2016. “Effect of Membrane Electrode Assembly Fabrication Parameters on the Proton Exchange Membrane Fuel Cell Performance.” International Journal of Ambient Energy 37 (6): 639–644. doi:10.1080/01430750.2015.1023842.
  • Moreno-Jimenez, D. A., D. E. Pacheco-Catalan, and L. C. Ordonez. 2015. “Influence of MEA Catalytic Layer Location and Air Supply on Open-Cathode Direct Ethanol Fuel Cell Performance.” International Journal of Electrochemical Science 10: 8808–8822.
  • Pavanan, V., and L. Varadharajan. 2018. “Optimization of Various Parameters for the Performance Enhancement of PEM Fuel Cell.” Indian Journal of Science and Technology 11 (1): 1–7. doi:10.17485/ijst/2018/v11i1/117126.
  • Pessot, A., C. Turpin, A. Jaafar, E. Soyez, O. Rallieres, G. Gager, and J. d’Arbigny. 2019. “Contribution to the Modelling of a Low Temperature PEM Fuel Cell in Aeronautical Conditions by Design of Experiments.” Mathematics and Computers in Simulation 158: 179–198. doi:10.1016/j.matcom.2018.07.008.
  • Pramanik, H., A. A. Wragg, and S. Basu. 2008. “Studies of Some Operating Parameters and Cyclic Voltammetry for a Direct Ethanol Fuel Cell.” Journal of Applied Electrochemistry 38: 1321–1328. doi:10.1007/s10800-008-9560-0.
  • Roudbari, M. N., R. Ojani, and J. B. Raoof. 2019. “Performance Improvement of Polymer Fuel Cell by Simultaneously Inspection of Catalyst Loading, Catalyst Content and Ionomer Using Home-Made Cathodic Half-Cell and Response Surface Method.” Energy 173: 151–161. doi:10.1016/j.energy.2019.02.082.
  • Shaari, N., S. K. Kamarudin, R. Bahru, S. H. Osman, and N. A. I. Md Ishak. 2021. “Progress and Challenges: Review for Direct Liquid Fuel Cell.” International Journal of Energy Research 45: 6644–6688. doi:10.1002/er.6353.
  • Song, S., G. Wang, W. Zhou, X. Zhao, G. Sun, Q. Xin, S. Kontou, and P. Tsiakaras. 2005a. “The Effect of the MEA Preparation Procedure on Both Ethanol Crossover and DEFC Performance.” Journal of Power Sources 140 (1): 103–110. doi:10.1016/j.jpowsour.2004.08.011.
  • Song, S., W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, and P. Tsiakaras. 2005b. “The Effect of Methanol and Ethanol Cross-Over on the Performance of PtRu/C-Based Anode DAFCs.” Applied Catalysis B: Environmental 55 (1): 65–72. doi:10.1016/j.apcatb.2004.05.017.
  • Song, S., W. Zhou, J. Tian, R. Cai, G. Sun, Q. Xin, S. Kontou, and P. Tasiakaras. 2004. “Ethanol Crossover Phenomena and its Influence on the Performance of DEFC.” Journal of Power Sources 145: 266–271. doi:10.1016/j.jpowsour.2004.12.065.
  • Suresh, N. S., and S. Jayanti. 2011. “Cross-over and Performance Modeling of Liquid-Feed Polymer Electrolyte Membrane Direct Ethanol Fuel Cells.” International Journal of Hydrogen Energy 36: 14648–14658. doi:10.1016/j.ijhydene.2011.07.105.
  • Thepkaew, J., A. Therdthianwong, and S. Therdthianwong. 2008. “Key Parameters of Active Layers Affecting Proton Exchange Membrane (PEM) Fuel Cell Performance.” Energy 33: 1794–1800. doi:10.1016/j.energy.2008.08.008.
  • Therdthianwong, A., P. Manomayidthikarn, and S. Therdthianwong. 2007. “Investigation of Membrane Electrode Assembly (MEA) hot-Pressing Parameters for Proton Exchange Membrane Fuel Cell.” Energy 32: 2401–2411. doi:10.1016/j.energy.2007.07.005.
  • Vignesh, P., A.R. Pradeep Kumar, N. Shankar Ganesh, V. Jayaseelan, and, K. Sudhakar. 2021. “A Review of Conventional and Renewable Biodiesel Production.” Chinese Journal of Chemical Engineering 40: 1–17. doi:10.1016/j.cjche.2020.10.025.
  • Wang, K., F. Wang, Y. Zhao, and W. Zhang. 2021. “Surface-tailored PtPdCu Ultrathin Nanowires as Advanced Electrocatalysts for Ethanol Oxidation and Oxygen Reduction Reaction in Direct Ethanol Fuel Cell.” Journal of Energy Chemistry 52: 251–261. doi:10.1016/j.jechem.2020.04.056.
  • Xu-hon, W., Y. Shan-mei, Z. Yu, and N. Hong-jun. 2012. “Preparation and Performance Research of PtSn Catalyst Supported on Carbon Fiber for Direct Ethanol Fuel Cells.” Journal of Fuel Chemistry and Technology 40: 1454–1458. doi:10.1016/S1872-5813(13)60008-0.
  • Yong, Y. W., A. M. I. N. Azam, M. S. Masdar, A. M. Zainoodin, and S. K. Kamarudin. 2019. “Anode Structure with Double-Catalyst Laters for Improving the Direct Ethanol Fuel Cell Performance.” International Journal of Hydrogen Energy 45 (42): 22302–22314. doi:10.1016/j.ijhydene.2019.11.233.
  • Zakaria, Z., S. K. Kamarudin, S. N. Timmiat, and M. S. Masdar. 2018. “New Composite Membrane Poly(Vinyl Alcohol)/Graphene Oxide for Direct Ethanol-Proton Exchange Membrane Fuel Cell.” Journal of Applied Polymer Science 136 (2): 1–13. doi:10.1002/app.46928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.