141
Views
10
CrossRef citations to date
0
Altmetric
Research Article

GPU-optimized LBM-MRT simulation of free convection and entropy generation of non-Newtonian power-law nanofluids in a porous enclosure at REV scale

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 995-1016 | Received 07 Jun 2022, Accepted 28 Nov 2022, Published online: 29 Dec 2022

References

  • Ahmed, T., S. Hassan, M. F. Hasan, M. M. Molla, M. A. Taher, and S. C. Saha. 2021. “Lattice Boltzmann Simulation of Magnetic Field Effect on Electrically Conducting Fluid at Inclined Angles in Rayleigh-Bénard Convection.” Energy Engineering 118 (1): 15–36. doi:10.32604/EE.2020.011237.
  • Ahmed, S. E., A. K. Hussein, H. A. Mohammed, and S. Sivasankaran. 2014. “Boundary Layer Flow and Heat Transfer due to Permeable Stretching Tube in the Presence of Heat Source/Sink Utilizing Nanofluids.” Applied Mathematics and Computation 238: 149–162. doi:10.1016/j.amc.2014.03.106.
  • Al-Rashed, A. A., K. Kalidasan, L. Kolsi, A. Aydi, E. H. Malekshah, A. K. Hussein, and P. Rajesh Kanna. 2018. “Three-Dimensional Investigation of the Effects of External Magnetic Field Inclination on Laminar Natural Convection Heat Transfer in CNT–Water Nanofluid Filled Cavity.” Journal of Molecular Liquids 252: 454–468. doi:10.1016/j.molliq.2018.01.006.
  • Ali, B., S. Hussain, Y. Nie, A. K. Hussein, and D. Habib. 2021. “Finite Element Investigation of Dufour and Soret Impacts on MHD Rotating Flow of Oldroyd-B Nanofluid Over a Stretching Sheet with Double Diffusion Cattaneo Christov Heat Flux Model.” Powder Technology 377: 439–452. doi:10.1016/j.powtec.2020.09.008.
  • Beavers, G. S., and D. D. Joseph. 1967. “Boundary Conditions at a Naturally Permeable Wall.” Journal of Fluid Mechanics 30: 197–207. doi:10.1017/S0022112067001375.
  • Bertsche, D., P. Knipper, S. Meinicke, K. Dubil, and T. Wetzel. 2022. “Experimental Investigation on Heat Transfer Enhancement with Passive Inserts in Flat Tubes in due Consideration of an Efficiency Assessment.” Fluids 7: 53. doi:10.3390/fluids7020053.
  • Bhuvaneswari, M., S. Eswaramoorthi, S. Sivasankaran, and A. K. Hussein. 2019. “Cross-Diffusion Effects on MHD Mixed Convection over a Stretching Surface in a Porous Medium with Chemical Reaction and Convective Condition.” Engineering Transactions 67: 3–19. doi:10.24423/EngTrans.820.20190308.
  • Böhme, G. 2012. Non-Newtonian Fluid Mechanics. Amsterdam: Elsevier.
  • Brinkman, H. C. 1952. “The Viscosity of Concentrated Suspensions and Solutions.” The Journal of Chemical Physics 20: 571–571. doi:10.1063/1.1700493.
  • Chand, R., G. C. Rana, and A. K. Hussein. 2014. “On the Onsetof Thermal Instability in a Low Prandtl Number Nanofluid Layer in a Porous Medium.” Journal of Applied Fluid Mechanics 8: 265–272. doi:10.18869/ACADPUB.JAFM.67.221.22830.
  • Chand, R., G. C. Rana, and A. K. Hussein. 2015. “Effect of Suspended Particles on the Onset of Thermal Convection in a Nanofluid Layer for More Realistic Boundary Conditions.” International Journal of Fluid Mechanics Research 42: 375–390. doi:10.1615/InterJFluidMechRes.v42.i5.10.
  • Chen, X. B., P. Yu, S. H. Winoto, and H. T. Low. 2007. “Free Convection in a Porous Wavy Cavity Based on the Darcy-Brinkman-Forchheimer Extended Model.” Numerical Heat Transfer, Part A: Applications 52: 377–397. doi:10.1080/10407780701301595.
  • De Izarra, L., J.-L. Rouet, and B. Izrar. 2011. “High-Order Lattice Boltzmann Models for Gas Flow for a Wide Range of Knudsen Numbers.” Physical Review E 84: 066705. doi:10.1103/PhysRevE.84.066705.
  • Elsaid, K., A. G. Olabi, T. Wilberforce, M. A. Abdelkareem, and E. T. Sayed. 2021. “Environmental Impacts of Nanofluids: A Review.” Science of the Total Environment 763: 144202. doi:10.1016/j.scitotenv.2020.144202.
  • Elsharkawy, A. A., and L. H. Guedouar. 2001. “Hydrodynamic Lubrication of Porous Journal Bearings Using a Modified Brinkman-Extended Darcy Model.” Tribology International 34: 767–777. doi:10.1016/S0301-679X(01)00070-6.
  • Ghachem, K., A. K. Hussein, L. Kolsi, and O. Younis. 2021. “CNT–Water Nanofluid Magneto-Convective Heat Transfer in a Cubical Cavity Equipped with Perforated Partition.” The European Physical Journal Plus 136: 1–22. doi:10.1140/epjp/s13360-021-01387-y.
  • Ghalambaz, M., A. Behseresht, J. Behseresht, and A. Chamkha. 2015. “Effects of Nanoparticles Diameter and Concentration on Natural Convection of the Al2O3–Water Nanofluids Considering Variable Thermal Conductivity around a Vertical Cone in Porous Media.” Advanced Powder Technology 26: 224–235. doi:10.1016/j.apt.2014.10.001.
  • Guo, Z., and T. S. Zhao. 2002. “Lattice Boltzmann Model for Incompressible Flows through Porous Media.” Physical Review E 66: 036304. doi:10.1103/PhysRevE.66.036304.
  • Guo, Z., and T. S. Zhao. 2005. “A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media.” Numerical Heat Transfer, Part B: Fundamentals 47: 157–177. doi:10.1080/10407790590883405.
  • Guo, Z., T. S. Zhao, and Y. Shi. 2006. “Physical Symmetry, Spatial Accuracy, and Relaxation Time of the Lattice Boltzmann Equation for Microgas Flows.” Journal of Applied Physics 99: 074903. doi:10.1063/1.2185839.
  • Hasan, M. F., H. Abuel-Naga, and E.-C. Leong. 2021. “A Modified Series-Parallel Electrical Resistivity Model of Saturated Sand/Clay Mixture.” Engineering Geology 290: 106193. doi:10.1016/j.enggeo.2021.106193.
  • Hasan, M. F., T. Ahmed Himika, and M. M. Molla. 2017. “Lattice Boltzmann Simulation of Airflow and Heat Transfer in a Model Ward of a Hospital.” Journal of Thermal Science and Engineering Applications 9: 011011. doi:10.1115/1.4034817.
  • Hasan, M. F., M. M. Molla, M. Kamrujjaman, and S. Siddiqa. 2022. “Natural Convection Flow over a Vertical Permeable Circular Cone with Uniform Surface Heat Flux in Temperature-Dependent Viscosity with Three-Fold Solutions within the Boundary Layer.” Computation 10: 60. doi:10.3390/computation10040060.
  • Hassan, S., U. H. Akter, P. Nag, M. M. Molla, A. Khan, and M. F. Hasan. 2022. “Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City.” Atmosphere 13: 1028. doi:10.3390/atmos13071028.
  • Hatami, M., and D. D. Ganji. 2013. “Heat Transfer and Flow Analysis for SA-TiO2 Non-Newtonian Nanofluid Passing through the Porous Media between Two Coaxial Cylinders.” Journal of Molecular Liquids 188: 155–161. doi:10.1016/j.molliq.2013.10.009.
  • Himika, T. A., M. Hasan, and M. Molla. 2016. “Lattice Boltzmann Simulation of Airflow and Mixed Convection in a General Ward of Hospital.” Journal of Computational Engineering 2016: 1–15. doi:10.1155/2016/5405939.
  • Himika, T. A., S. Hassan, M. Hasan, and M. Molla. 2020. “Lattice Boltzmann Simulation of MHD Rayleigh–Bénard Convection in Porous Media.” Arabian Journal for Science and Engineering 45: 9527–9547. doi:10.1007/s13369-020-04812-z.
  • Ho, C. J., W. K. Liu, Y. S. Chang, and C. C. Lin. 2010. “Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study.” International Journal of Thermal Sciences 49: 1345–1353. doi:10.1016/j.ijthermalsci.2010.02.013.
  • Hojjat, M., S. G. Etemad, R. Bagheri, and J. Thibault. 2011. “Rheological Characteristics of Non-Newtonian Nanofluids: Experimental Investigation.” International Communications in Heat and Mass Transfer 38: 144–148. doi:10.1016/j.icheatmasstransfer.2010.11.019.
  • Hossain, A., P. Nag, and M. M. Molla. 2022. “Mesoscopic Simulation of MHD Mixed Convection of Non-Newtonian Ferrofluids with a Non-Uniformly Heated Plate in an Enclosure.” Physica Scripta 98: 015008. doi:10.1088/1402-4896/aca56c.
  • Hosseinzadeh, K., A. R. Mogharrebi, A. Asadi, M. Sheikhshahrokhdehkordi, S. Mousavisani, and D. D. Ganji. 2022. “Entropy Generation Analysis of Mixture Nanofluid (H2O/C2H6O2)–Fe3O4 Flow Between Two Stretching Rotating Disks under the Effect of MHD and Nonlinear Thermal Radiation.” International Journal of Ambient Energy 43: 1045–1057. doi:10.1080/01430750.2019.1681294.
  • Hu, L., Z. Dong, C. Peng, and L.-P. Wang. 2021. “Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow Using the Lattice Boltzmann Method.” Fluids 6: 217. doi:10.3390/fluids6060217.
  • Ilis, G. G., M. Mobedi, and B. Sunden. 2008. “Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity with Differentially Heated Vertical Walls.” International Communications in Heat and Mass Transfer 35: 696–703. doi:10.1016/j.icheatmasstransfer.2008.02.002.
  • Islam, M., S. A. Hai, P. Nag, and M. M. Molla. 2021. “Multiple-Relaxation-Time Lattice Boltzmann Simulation of Free Convection and Irreversibility of Nanofluid with Variable Thermophysical Properties.” Physica Scripta 96: 125031. doi:10.1088/1402-4896/ac3c5a.
  • Jahanbakhshi, A., A. A. Nadooshan, and M. Bayareh. 2018. “Magnetic Field Effects on Natural Convection Flow of a Non-Newtonian Fluid in an L-Shaped Enclosure.” Journal of Thermal Analysis and Calorimetry 133: 1407–1416. doi:10.1007/s10973-018-7219-6.
  • Jiang, F., K. Matsumura, J. Ohgi, and X. Chen. 2021. “A GPU-Accelerated Fluid–Structure-Interaction Solver Developed by Coupling Finite Element and Lattice Boltzmann Methods.” Computer Physics Communications 259: 107661. doi:10.1016/j.cpc.2020.107661.
  • Kasmani, R. M., S. Sivasankaran, M. Bhuvaneswari, and A. K. Hussein. 2017. “Analytical and Numerical Study on Convection of Nanofluid Past a Moving Wedge with Soret and Dufour Effects.” International Journal of Numerical Methods for Heat & Fluid Flow 27 (10): 2333–2354. doi:10.1108/HFF-07-2016-0277.
  • Kefayati, G. R. 2015. “FDLBM Simulation of Entropy Generation due to Natural Convection in an Enclosure Filled with Non-Newtonian Nanofluid.” Powder Technology 273: 176–190. doi:10.1016/j.powtec.2014.12.042.
  • Kefayati, G. 2020. “An Immersed Boundary-Lattice Boltzmann Method for Thermal and Thermo-Solutal Problems of Newtonian and Non-Newtonian Fluids.” Physics of Fluids 32: 073103. doi:10.1063/5.0013977.
  • Khanafer, K., K. Vafai, and M. Lightstone. 2003. “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids.” International Journal of Heat and Mass Transfer 46: 3639–3653. doi:10.1016/S0017-9310(03)00156-X.
  • Kolsi, L., A. K. Hussein, M. N. Borjini, H. A. Mohammed, and H. B. Aïssia. 2014. “Computational Analysis of Three-Dimensional Unsteady Natural Convection and Entropy Generation in a Cubical Enclosure Filled with Water-Al2O3 Nanofluid.” Arabian Journal for Science and Engineering 39: 7483–7493. doi:10.1007/s13369-014-1341-y.
  • Lera, G., and M. Pinzolas. 2002. “Neighborhood Based Levenberg-Marquardt Algorithm for Neural Network Training.” IEEE Transactions on Neural Networks 13: 1200–1203. doi:10.1109/TNN.2002.1031951.
  • Li, Z., A. K. Hussein, O. Younis, M. Afrand, and S. Feng. 2020a. “Natural Convection and Entropy Generation of a Nanofluid around a Circular Baffle Inside an Inclined Square Cavity Under Thermal Radiation and Magnetic Field Effects.” International Communications in Heat and Mass Transfer 116: 104650. doi:10.1016/j.icheatmasstransfer.2020.104650.
  • Li, Z., A. K. Hussein, O. Younis, S. Rostami, and W. He. 2020b. “Effect of Alumina Nano-Powder on the Natural Convection of Water under the Influence of a Magnetic Field in a Cavity and Optimization Using RMS: Using Empirical Correlations for the Thermal Conductivity and a Sensitivity Analysis.” International Communications in Heat and Mass Transfer 112: 104497. doi:10.1016/j.icheatmasstransfer.2020.104497.
  • Li, L., Z. Luo, F. He, K. Sun, and X. Yan. 2022. “An Improved Partial Similitude Method for Dynamic Characteristic of Rotor Systems Based on Levenberg–Marquardt Method.” Mechanical Systems and Signal Processing 165: 108405. doi:10.1016/j.ymssp.2021.108405.
  • Liu, Q., X.-B. Feng, Y.-L. He, C.-W. Lu, and Q.-H. Gu. 2019. “Three-Dimensional Multiple-Relaxation-Time Lattice Boltzmann Models for Single-Phase and Solid-Liquid Phase-Change Heat Transfer in Porous Media at the REV Scale.” Applied Thermal Engineering 152: 319–337. doi:10.1016/j.applthermaleng.2019.02.057.
  • Lu, Y., H. Abuel-Naga, Q. Al Rashid, and M. F. Hasan. 2019. “Effect of Pore-Water Salinity on the Electrical Resistivity of Partially Saturated Compacted Clay Liners.” Advances in Materials Science and Engineering 2019: Article ID 7974152. doi:10.1155/2019/7974152.
  • Mahmoudi, A. H., M. Shahi, A. M. Shahedin, and N. Hemati. 2011. “Numerical Modeling of Natural Convection in an Open Cavity with Two Vertical Thin Heat Sources Subjected to a Nanofluid.” International Communications in Heat and Mass Transfer 38: 110–118. doi:10.1016/j.icheatmasstransfer.2010.09.009.
  • Matin, M. H., I. Pop, and S. Khanchezar. 2013. “Natural Convection of Power-Law Fluid between Two-Square Eccentric Duct Annuli.” Journal of Non-Newtonian Fluid Mechanics 197: 11–23. doi:10.1016/j.jnnfm.2013.02.002.
  • Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Clarendon Press.
  • Mendu, S. S., and P. K. Das. 2012. “Flow of Power-Law Fluids in a Cavity Driven by the Motion of Two Facing Lids – A Simulation by Lattice Boltzmann Method.” Journal of Non-Newtonian Fluid Mechanics 175-176: 10–24. doi:10.1016/j.jnnfm.2012.03.007.
  • Mendu, S. S., and P. K. Das. 2021. “Lattice Boltzmann Modeling for Natural Convection in Power-Law Fluids within a Partially Heated Square Enclosure.” Journal of Heat Transfer 143. doi:10.1115/1.4049472.
  • Mezrhab, A., M. A. Moussaoui, M. Jami, H. Naji, and M. Bouzidi. 2010. “Double MRT Thermal Lattice Boltzmann Method for Simulating Convective Flows.” Physics Letters A 374: 3499–3507. doi:10.1016/j.physleta.2010.06.059.
  • Molla, M. M., M. J. Haque, M. A. I. Khan, and S. C. Saha. 2018. “GPU Accelerated Multiple-Relaxation-Time Lattice Boltzmann Simulation of Convective Flows in a Porous Media.” Frontiers in Mechanical Engineering 4: 15. doi:10.3389/fmech.2018.00015.
  • Molla, M. M., P. Nag, S. Thohura, and A. Khan. 2020. “A Graphics Process Unit-Based Multiple-Relaxation-Time Lattice Boltzmann Simulation of non-Newtonian Fluid Flows in a Backward Facing Step.” Computation 8: 83. doi:10.3390/computation8030083.
  • Moré, J. J. 1978. “The Levenberg-Marquardt Algorithm: Implementation and Theory.” In Numerical Analysis, edited by G. A. Watson, 105–116. Lecture Notes in Mathematics, vol 630. Berlin: Springer. doi:10.1007/BFb0067700.
  • Nabavizadeh, S. A., H. Barua, M. Eshraghi, and S. D. Felicelli. 2021. “A Multiple-Grid Lattice Boltzmann Method for Natural Convection under Low and High Prandtl Numbers.” Fluids 6: 148. doi:10.3390/fluids6040148.
  • Nithiarasu, P., K. N. Seetharamu, and T. Sundararajan. 1997. “Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium.” International Journal of Heat and Mass Transfer 40: 3955–3967. doi:10.1016/S0017-9310(97)00008-2.
  • Obrecht, C., F. Kuznik, B. Tourancheau, and J.-J. Roux. 2011. “A New Approach to the Lattice Boltzmann Method for Graphics Processing Units.” Computers & Mathematics with Applications 61: 3628–3638. doi:10.1016/j.camwa.2010.01.054.
  • Pan, C., L.-S. Luo, and C. T. Miller. 2006. “An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation.” Computers & Fluids 35: 898–909. doi:10.1016/j.compfluid.2005.03.008.
  • Prestininzi, P., A. Montessori, M. La Rocca, and S. Succi. 2016. “Reassessing the Single Relaxation Time Lattice Boltzmann Method for the Simulation of Darcy’s Flows.” International Journal of Modern Physics C 27: 1650037. doi:10.1142/S0129183116500376.
  • Rahman, A., P. Nag, M. M. Molla, and S. Hassan. 2021. “Magnetic Field Effects on Natural Convection and Entropy Generation of Non-Newtonian Fluids Using Multiple-Relaxation-Time Lattice Boltzmann Method.” International Journal of Modern Physics C 32: 2150015. doi:10.1142/S0129183121500157.
  • Rahman, A., D. A. Redwan, S. Thohura, M. Kamrujjaman, and M. M. Molla. 2022. “Natural Convection and Entropy Generation of Non-Newtonian Nanofluids with Different Angles of External Magnetic Field Using GPU Accelerated MRT-LBM.” Case Studies in Thermal Engineering 30: 101769. doi:10.1016/j.csite.2022.101769.
  • Ranganathan, A. 2004. “The Levenberg-Marquardt Algorithm.” Tutoral on LM Algorithm 11: 101–110.
  • Reddy, K. S., N. R. Kamnapure, and S. Srivastava. 2017. “Nanofluid and Nanocomposite Applications in Solar Energy Conversion Systems for Performance Enhancement: A Review.” International Journal of Low-Carbon Technologies 12: 1–23. doi:10.1093/ijlct/ctw007.
  • Sajjadi, H., A. A. Delouei, M. Atashafrooz, and M. Sheikholeslami. 2018. “Double MRT Lattice Boltzmann Simulation of 3-D MHD Natural Convection in a Cubic Cavity with Sinusoidal Temperature Distribution Utilizing Nanofluid.” International Journal of Heat and Mass Transfer 126: 489–503. doi:10.1016/j.ijheatmasstransfer.2018.05.064.
  • Sepyani, M., A. Shateri, and M. Bayareh. 2019. “Investigating the Mixed Convection Heat Transfer of a Nanofluid in a Square Chamber with a Rotating Blade.” Journal of Thermal Analysis and Calorimetry 135 (1): 609–623. doi:10.1007/s10973-018-7098-x.
  • Shan, X., and H. Chen. 1993. “Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components.” Physical Review E 47: 1815–1819. doi:10.1103/PhysRevE.47.1815.
  • Sheremet, M. A., H. F. Oztop, I. Pop, and N. Abu-Hamdeh. 2016. “Analysis of Entropy Generation in Natural Convection of Nanofluid Inside a Square Cavity Having Hot Solid Block: Tiwari and Das’ Model.” Entropy 18: 9. doi:10.3390/e18010009.
  • Shirazi, M., A. Shateri, and M. Bayareh. 2018. “Numerical Investigation of Mixed Convection Heat Transfer of a Nanofluid in a Circular Enclosure with a Rotating Inner Cylinder.” Journal of Thermal Analysis and Calorimetry 133: 1061–1073. doi:10.1007/s10973-018-7186-y.
  • Succi, S. 2001. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Rome: Oxford University Press.
  • Thohura, S., M. Molla, M. Sarker, and M. Alam. 2019. “Numerical Simulation of non-Newtonian Power-Law Fluid Flow in a Lid-Driven Skewed Cavity.” International Journal of Applied and Computational Mathematics 5: 1–29. doi:10.1007/s40819-018-0590-y.
  • Trouette, B. 2013. “Lattice Boltzmann Simulations of a Time-Dependent Natural Convection Problem.” Computers & Mathematics with Applications 66: 1360–1371. doi:10.1016/j.camwa.2013.07.024.
  • Turan, O., A. Sachdeva, N. Chakraborty, and R. J. Poole. 2011. “Laminar Natural Convection of Power-Law Fluids in a Square Enclosure with Differentially Heated Side Walls Subjected to Constant Temperatures.” Journal of Non-Newtonian Fluid Mechanics 166: 1049–1063. doi:10.1016/j.jnnfm.2011.06.003.
  • Wang, J., D. Wang, P. Lallemand, and L.-S. Luo. 2013. “Lattice Boltzmann Simulations of Thermal Convective Flows in two Dimensions.” Computers & Mathematics with Applications 65: 262–286. doi:10.1016/j.camwa.2012.07.001.
  • Watanabe, S., and T. Aoki. 2021. “Large-Scale Flow Simulations Using Lattice Boltzmann Method with AMR Following Free-Surface on Multiple GPUs.” Computer Physics Communications 264: 107871. doi:10.1016/j.cpc.2021.107871.
  • Yadav, D., R. Bhargava, G. S. Agrawal, N. Yadav, J. Lee, and M. C. Kim. 2014. “Thermal Instability in a Rotating Porous Layer Saturated by a Non-Newtonian Nanofluid with Thermal Conductivity and Viscosity Variation.” Microfluidics and Nanofluidics 16: 425–440. doi:10.1007/s10404-013-1234-5.
  • Yuki, J. Q., I. Sen, M. M. Q. Sakib, P. Nag, and M. M. Molla. 2021. “Multiple-Relaxation-Time Lattice Boltzmann Simulation of Magnetic Field Effect on Natural Convection of Non-Newtonian Nanofluid in Rectangular Enclosure.” Advances in Applied Mathematics and Mechanics 13: 1142–1168. doi:10.4208/aamm.OA-2020-0118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.