74
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Entropy approach of hydromagnetic Williamson nanofluid flow with Joule heating

, , &
Pages 1106-1118 | Received 24 Jan 2022, Accepted 30 May 2022, Published online: 10 Jan 2023

References

  • Alfvén, H. 1942. “Existence of Electromagnetic-Hydrodynamic Waves.” Nature 150 (3805): 405–406. doi:10.1038/150405d0.
  • Bejan, A. 1996. “Entropy Generation Minimization: The new Thermodynamics of Finite-Size Devices and Finite-Time Processes.” Journal of Applied Physics 79 (3): 1191–1218. doi:10.1063/1.362674.
  • Bhatti, M. M., M. B. Arian, A. Zeeshan, R. Ellahi, and M. H. Doranehgard. 2022. “Swimming of Gyrotactic Microorganism in MHD Williamson Nanofluid Flow Between Rotating Circular Plates Embedded in Porous Medium: Application of Thermal Energy Storage.” Journal of Energy Storage 45: 103511. doi:10.1016/j.est.2021.103511.
  • Bouslimi, J., M. Omri, R. A. Mohamed, K. H. Mahmoud, S. M. Abo-Dahab, and M. S. Soliman. 2021. “MHD Williamson Nanofluid Flow Over a Stretching Sheet Through a Porous Medium Under Effects of Joule Heating, Nonlinear Thermal Radiation, Heat Generation/Absorption, and Chemical Reaction.” Advances in Mathematical Physics 2021: 9950993. doi:10.1155/2021/9950993.
  • Buongiorno, J. 2006. “Convective Transport in Nanofluids.” Journal of Heat Transfer 128 (3): 240–250. doi:10.1115/1.2150834.
  • Chen, Z., D. Zheng, J. Wang, and B. Sundén. 2019. “Experimental Investigation on Heat Transfer Characteristics of Various Nanofluids in an Indoor Electric Heater.” Renewable Energy 147 (1): 1011–1018. doi:10.1016/j.renene.2019.09.036.
  • Choi, S., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” ASME International Mechanical Engineering Congress & Exposition 66: 99–105. https://www.osti.gov/biblio/196525-enhancing-thermal-conductivity-fluids-nanoparticles.
  • Chu, Y.-M., B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, and S. U. Khan. 2022. “Combined Impact of Cattaneo-Christov Double Diffusion and Radiative Heat Flux on bio-Convective Flow of Maxwell Liquid Configured by a Stretched Nano-Material Surface.” Applied Mathematics and Computation 419: 126883. doi:10.1016/j.amc.2021.126883.
  • Eastman, J. A., S. Choi, and S. Li. 1996. “Enhanced Thermal Conductivity Through the Development of Nanofluids.” MRS Online Proceedings Library 457: 3–11. doi:10.1557/PROC-457-3.
  • Gopalakrishnan, K. S., I. S. Oyelakin, S. Mondal, and R. P. Sharma. 2022. “Impact of Joule Heating and Nonlinear Thermal Radiation on the Flow of Casson Nanofluid with Entropy Generation.” International Journal of Ambient Energy 43 (1): 5687–5710. doi:10.1080/01430750.2021.1973559.
  • Gorla, R. S. R., and I. Sidawi. 1994. “Free Convection on a Vertical Stretching Surface with Suction and Blowing.” Applied Scientific Research 52 (3): 247–257. doi:10.1007/BF00853952.
  • Hayat, T., M. W. A. Khan, A. Alsaedi, and M. I. Khan. 2017. “Squeezing Flow of Second Grade Liquid Subject to non-Fourier Heat Flux and Heat Generation/Absorption.” Colloid and Polymer Science 295: 967–975. doi:10.1007/s00396-017-4089-6.
  • Hayat, T., S. A. Khan, M. I. Khan, and A. Alsaedi. 2019. “Optimizing the Theoretical Analysis of Entropy Generation in the Flow of Second Grade Nanofluid.” Physica Scripta 94: 085001. doi:10.1088/1402-4896/ab0f65.
  • Hayat, T., M. Tamoor, M. I. Khan, and A. Alsaedi. 2016. “Numerical Simulation for non-Linear Radiative Flow by Convective Cylinder.” Results in Physics 6: 1031–1035. doi:10.1016/j.rinp.2016.11.026.
  • Ibrahim, W., and D. Gamachu. 2019. “Nonlinear Convection Flow of Williamson Nanofluid Past a Radially Stretching Sheet.” AIP Advances 9: 085026. doi:10.1063/1.5113688.
  • Kebede, T., E. Haile, G. Awgichew, and T. Walelign. 2020. “Heat and Mass Transfer in Unsteady Boundary Layer Flow of Williamson Nanofluids.” Journal of Applied Mathematics 2020: 1890972. doi:10.1155/2020/189-0972.
  • Khan, M. I., T. Hayat, M. Waqas, and A. Alsaedi. 2017. “Outcome for Chemically Reactive Aspect in Flow of Tangent Hyperbolic Material.” Journal of Molecular Liquids 230: 143–151. doi:10.1016/j.molliq.2017.01.016.
  • Khan, M. I., S. Qayyum, S. Kadry, W. A. Khan, and S. Z. Abbas. 2020. “Irreversibility Analysis and Heat Transport in Squeezing Nanofluid Flow of Non-Newtonian (Second-Grade) Fluid Between Infinite Plates with Activation Energy.” Arabian Journal for Science and Engineering 45: 4939–4947. doi:10.1007/s13369-020-04442-5.
  • Kuznetsov, A. V., and D. A. Nield. 2010. “Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate.” International Journal of Thermal Sciences 49 (2): 243–247. doi:10.1016/j.ijthermalsci.2009.07.015.
  • Loganathan, K., and S. Rajan. 2020. “An Entropy Approach of Williamson Nanofluid Flow with Joule Heating and Zero Nanoparticle Mass Flux.” Journal of Thermal Analysis & Calorimetry 141 (6): 2599–2612. doi:10.1007/s10973-020-09414-3.
  • Mahian, O., A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, and S. Wongwises. 2013. “A Review of Entropy Generation in Nanofluid Flow.” International Journal of Heat and Mass Transfer 65: 514–532. doi:10.1016/j.ijheatmasstransfer.2013.06.010.
  • Masuda, H., A. Ebata, and N. Hishinuma. 1993. “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles.” Netsu Bussei 7 (4): 227–233. https://www.scienceopen.com/document?vid=bd7d9588-0fa0-4c35-8755-bb785167fdb0. doi:10.2963/jjtp.7.227
  • Morrison, F. A. 2001. Understanding Rheology. New York: Oxford University Press.
  • Motsa, S. S. 2013. “A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems.” Journal of Applied Mathematics 2013: 423628. doi:10.1155/2013/423628.
  • Nadeem, S., S. T. Hussain, and C. Lee. 2013. “Flow of a Williamson Fluid Over a Stretching Sheet.” Brazilian Journal of Chemical Engineering 30 (03): 619–625. doi:10.1590/S0104-66322013000300019.
  • Nader, E., S. Skinner, M. Romana, R. Fort, N. Lemonne, N. Guillot, A. Gauthier, et al. 2019. “Blood Rheology: Key Parameters, Impact on Blood Flow; Role in Sickle Cell Disease and Effects of Exercise.” Frontiers in Physiology 10: 1329. doi:10.3389/fphys.2019.01329.
  • Nayak, M. K., T. M. Agbaje, S. Mondal, P. Sibanda, and P. G. L. Leach. 2020b. “Thermodynamic Effect in Darcy-Forchheimer Nanofluid Flow of a Single-Wall Carbon Nanotube/Multi-Wall Carbon Nanotube Suspension due to a Stretching/Shrinking Rotating Disk: Buongiorno two-Phase Model.” Journal of Engineering Mathematics 120: 43–65. https://link.springer.com/article/10.1007s10665-019-10031-9. doi:10.1007/s10665-019-10031-9
  • Nayak, M. K., S. D. Oloniijn, S. Mondal, S. P. Goqo, and P. Sibanda. 2020a. “Flow and Heat Transfer Over a Thin Needle Immersed in a Porous Medium Filled with an Al2O3-Water Nanofluids Using Buongiorno’s two-Phase Model.” International Journal of Ambient Energy 43 (1): 3652–3652. doi:10.1080/01430750.2020.1845238.
  • Nazeer, M., F. Hussain, M. I. Khan, A. Rehman, E. R. El-Zahar, Y.-M. Chu, and M. Y. Malik. 2022. “Theoretical Study of MHD Electro-Osmotically Flow of Third-Grade Fluid in Micro Channel.” Applied Mathematics and Computation 420: 126868. doi:10.1016/j.amc.2021.126868.
  • Noghrehabadadi, A., M. Ghalambaz, and A. Ghanbarzadeh. 2012. “Heat Transfer of Magnetohydrodynamic Viscous Nanofluids Over an Isothermal Stretching Sheet.” Journal of Thermophysics and Heat Transfer 26 (4): 686–689. doi:10.2514/1.T3866.
  • Oyelakin, I. S., P. C. Lalramneihmawii, S. Mondal, and P. Sibanda. 2022. “Analysis of Double-Diffusion Convection on Three-Dimensional MHD Stagnation Point Flow of a Tangent Hyperbolic Casson Nanofluid.” International Journal of Ambient Energy 43 (1): 1854–1865. doi:10.1080/01430750.2020.1722964.
  • Oyelakin, I. S., S. Mondal, and P. Sibanda. 2017. “Unsteady MHD Three-Dimensional Casson Nanofluid Flow Over a Porous Linear Stretching Sheet with Slip Condition.” Frontiers in Heat and Mass Transfer 8: 37. doi:10.5098/hmt.8.37.
  • Oyelakin, I. S., and P. Sibanda. 2019. “A Numerical Study of Entropy Generation in Radiative Casson Nanofluid Flow.” Engineering Reports 2: 11. doi:10.3390/reports2010011.
  • Prandtl, L. 1904. On the Motion of Fluids with Very Little Viscosity.
  • Qayyum, S., M. I. Khan, T. Hayat, and A. Alsaedi. 2018. “Comparative Investigation of Five Nanoparticles in Flow of Viscous Fluid with Joule Heating and Slip due to Rotating Disk.” Physica B: Condensed Matter 534: 173–183. doi:10.1016/j.physb.2018.01.044.
  • Qayyum, S., M. I. Khan, F. Masood, Y. M. Chu, S. Kadry, and M. Nazeer. 2020. “Interpretation of Entropy Generation in Williamson Fluid Flow with non Linear Thermal Radiation and First Order Velocity Slip.” Mathematical Methods in the Applied Sciences 44 (9): 7756–7765. doi:10.1002/mma.6735.
  • Rai, N., and S. Mondal. 2021. “Spectral Methods to Solve Nonlinear Problems: A Review.” Partial Differential Equations in Applied Mathematics 4: 100043. doi:10.1016/j.padiff.2021.100043.
  • Raptis, A., C. Perdikis, and H. S. Takhar. 2004. “Effect of Thermal Radiation on MHD Flow.” Applied Mathematics and Computation 153: 645–649. doi:10.1016/S0096-3003(03)00657-X.
  • Sakiadis, B. C. 1961. “Boundary Layer Behavior on Continuous Solid Surfaces.” AIChE Journal 7: 221–225. doi:10.1002/aic.690070211.
  • San, J. Y., W. M. Worek, and Z. Lavan. 1987. “Entropy Generation in Combined Heat and Mass Transfer.” International Journal of Heat and Mass Transfer 30 (7): 1359–1369. doi:10.1016/0017-9310(87)90168-2.
  • Schlichting, H. 1951. Boundary Layer Theory. New York: McGraw-Hill Book Company.
  • Sithole, H., S. Mondal, P. Sibanda, and S. Motsa. 2017. “An Unsteady MHD Maxwell Nanofluid Flow with Convective Boundary Conditions Using Spectral Local Linearization Method.” Open Physics 15 (1): 637–646. doi:10.1515/phys-2017-0074.
  • Tawfik, M. M. 2016. “Experimental Studies of Nanofluid Thermal Conductivity Enhancement and Applications: A Review.” Renewable and Sustainable Energy Reviews 75: 1239–1253. doi:10.1016/j.rser.2016.11.111.
  • Vasudev, C., U. R. Rao, M. V. S. Reddy, and G. P. Rao. 2010. “Peristaltic Pumping of Williamson Fluid Through a Porous Medium in a Horizontal Channel with Heat Transfer.” American Journal of Scientific and Industrial Research 1 (3): 656–666. doi:10.5251/ajsir.2010.1.3.656.666.
  • Wang, C. Y. 1989. “Free Convection on a Vertical Stretching Surface.” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 69 (11): 418–420. doi:10.1002/zamm.198906-91115.
  • Wang, J., M. I. Khan, W. A. Khan, S. Z. Abbas, and M. I. Khan. 2019. “Transportation of Heat Generation/Absorption and Radiative Heat Flux in Homogeneous-Hetergeneous Catalytic Reactions of non-Newtonian Fluid (Oldroyd-B Model).” Computer Methods and Programs in Biomedicine 189: 105310. doi:10.1016/j.cmpb.2019.105310.
  • Williamson, R. V. 1929. “The Flow of Pseudoplastic Materials.” Industrial and Engineering Chemistry 21 (11): 1108–1111. doi:10.1021/ie50239a035.
  • Xuan, Y., and Q. Li. 2000. “Heat Transfer Enhancement of Nanofluids.” International Journal of Heat and Fluid Flow 21 (1): 58–64. doi:10.1016/S0142-727X(99)00067-3.
  • Zhang, L., M. M. Bhatti, E. E. Michaelides, M. Marin, and R. Ellahi. 2021. “Hybrid Nanofluid Flow Towards an Elastic Surface with Tantalum and Nickel Nanoparticles, Under the Influence of an Induced Magnetic Field.” The European Physical Journal Special Topics 231: 521–533. doi:10.1140/epjs/s11734-021-00409-1.
  • Zhao, T. H., M. I. Khan, and Y. M. Chu. 2021. “Artificial Neural Networking (ANN) Analysis for Heat and Entropy Generation in Flow of non-Newtonian Fluid Between two Rotating Disks.” Mathematical Methods in the Applied Sciences, doi:10.1002/mma.7310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.