95
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of radiative-magnetic hybrid nanofluid slip flow due to an exponentially stretching/shrinking permeable sheet with heat generation

&
Pages 1349-1360 | Received 30 May 2022, Accepted 28 Nov 2022, Published online: 08 Feb 2023

References

  • Abu-Hamdeh, N. H., A. A. Aljinaidi, M. A. Eltaher, K. H. Almitani, K. A. Alnefaie, A. M. Abusorrah, and M. R. Safaei. 2021. “Implicit Finite Difference Simulation of Prandtl-Eyring Nanofluid Over a Flat Plate with Variable Thermal Conductivity: A Tiwari and Das Model.” Mathematics 9: 3153. doi:10.3390/math9243153.
  • Ahmad, F., S. Abdal, H. Ayed, S. Hussain, S. Salim, and A. O. Almatroud. 2021. “The Improved Thermal Efficiency of Maxwell Hybrid Nanofluid Comprising of Graphene Oxide Plus Silver / Kerosene oil Over Stretching Sheet.” Case Studies in Thermal Engineering 27: 101257. doi:10.1016/j.csite.2021.101257.
  • Ahmad, S., M. N. Khan, and S. Nadeem. 2022. “Unsteady Three-Dimensional Bioconvective Flow of Maxwell Nanofluid Over an Exponentially Stretching Sheet with Variable Thermal Conductivity and Chemical Reaction.” International Journal of Ambient Energy, doi:10.1080/01430750.2022.2029765.
  • Awaludin, I. S., R. Ahmad, and A. Ishak. 2020. “On the Stability of the Flow Over a Shrinking Cylinder with Prescribed Surface Heat Flux.” Propulsion and Power Research 9 (2): 181–187. doi:10.1016/j.jppr.2020.03.001.
  • Awaludin, I. S., A. Ishak, and I. Pop. 2018. “On the Stability of MHD Boundary Layer Flow Over a Stretching/Shrinking Wedge.” Scientific Reports 8 (1): 1–8. doi:10.1038/s41598-018-31777-9.
  • Aziz, A., W. Jamshed, and T. Aziz. 2018. “Mathematical Model for Thermal and Entropy Analysis of Thermal Solar Collectors by Using Maxwell Nanofluids with Slip Conditions, Thermal Radiation and Variable Thermal Conductivity.” Open Physics 16: 123–136. doi:10.1515/phys-2018-0020.
  • Babu, J. R., K. K. Kumar, and S. S. Rao. 2017. “State-of-art Review on Hybrid Nanofluids.” Renewable and Sustainable Energy Reviews 77: 551–565. doi:10.1016/j.rser.2017.04.040.
  • Bilal, M., I. Asghar, M. Ramzan, K. S. Nisar, A. HAbdelAty, I. S. Yahia, and H. A. S. Ghazwani. 2022a. “Dissipated Electroosmotic EMHD Hybrid Nanofluid Flow Through the Micro-Channel.” Scientific Reports 12: 4771. doi:10.1038/s41598-022-08672-5.
  • Bilal, M., S. Z. Mazhar, M. Ramzan, and Y. Mehmood. 2021a. “Time-Dependent Hydromagnetic Stagnation Point Flow of a Maxwell Nanofluid with Melting Heat Effect and Amended Fourier And Fick's Laws.” Heat Transfer 50 (5): 4417–4434. doi:10.1002/htj.22081.
  • Bilal, M., M. Ramzan, Y. Mehmood, T. Sajid, S. Shah, and M. Y. Malik. 2021b. “A Novel Approach for EMHD Williamson Nanofluid Over the Nonlinear Sheet with Double Stratification and Ohmic Dissipation.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 09544089211059629, doi:10.1177/09544089211059629.
  • Bilal, M., I. N. A. M. Saba, S. Kanwal, and M. Nazeer. 2021c. “Aspects of the Aligned Magnetic Field Past a Stratified Inclined Sheet with Nonlinear Convection and Variable Thermal Conductivity.” Engineering Transactions 69 (3): 271–292. doi:10.24423/EngTrans.1239.20210826.
  • Bilal, M., H. Tariq, Y. Urva, I. Siddique, S. Shah, T. Sajid, and M. Nadeem. 2022b. “A Novel Nonlinear Diffusion Model of Magneto-Micropolar Fluid Comprising Joule Heating and Velocity Slip Effects.” Waves in Random and Complex Media, 1–17. doi:10.1080/17455030.2022.2079761.
  • Choi, S. U. S., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” United States. https://www.osti.gov/servlets/purl/196525.
  • Dawar, A., S. Islam, and Z. Shah. 2022. “A Comparative Analysis of the Performance of Magnetized Copper-Copper Oxide/Water and Copper-Copper Oxide/Kerosene oil Hybrid Nanofluids Flowing Through an Extending Surface with Velocity Slips and Thermal Convective Conditions.” International Journal of Ambient Energy, doi:10.1080/01430750.2022.2063387.
  • Eid, M. R., and M. A. Nafe. 2022. “Thermal Conductivity Variation and Heat Generation Effects on Magneto-Hybrid Nanofluid Flow in a Porous Medium with Slip Condition.” Waves in Random and Complex Media 32: 1103–1127. doi:10.1080/17455030.2020.1810365.
  • Freidoonimehr, N., and A. B. Rahimi. 2017. “Exact-solution of Entropy Generation for MHD Nanofluid Flow Induced by a Stretching/Shrinking Sheet with Transpiration: Dual Solution.” Advanced Powder Technology 28 (2): 671–685. doi:10.1016/j.apt.2016.12.005.
  • Gangadhar, K., T. Kannan, P. Jayalakshmi, and G. Sakthivel. 2021. “Dual Solutions for MHD Casson Fluid Over a Shrinking Sheet with Newtonian Heating.” International Journal of Ambient Energy 42 (3): 331–339. doi:10.1080/01430750.2018.1550018.
  • Ghosh, S., and S. Mukhopadhyay. 2020. “Stability Analysis for Model-Based Study of Nanofluid Flow Over an Exponentially Shrinking Permeable Sheet in Presence of Slip.” Neural Computing and Applications 32: 7201–7211. doi:10.1007/s00521-019-04221-w.
  • Giri, S. S., K. Das, and P. K. Kundu. 2021. “Computational Analysis of Thermal and Mass Transmit in a Hydromagnetic Hybrid Nanofluid Flow Over a Slippery Curved Surface.” International Journal of Ambient Energy, doi:10.1080/01430750.2021.2000491.
  • Hamid M., M. Usman, T. Zubair, R. U. Haq, W. Wanga. 2018. “Shape Effects of MoS2 Nanoparticles on Rotating Flow of Nanofluid Along a Stretching Surface with Variable Thermal Conductivity: A Galerkin Approach.” International Journal of Heat and Mass Transfer 124: 706–714. doi:10.1016/j.ijheatmasstransfer.2018.03.108.
  • Harris, S. D., D. B. Ingham, and I. Pop. 2009. “Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model with Slip.” Transport in Porous Media 77: 267–285. doi:10.1007/s11242-008-9309-6.
  • Hina, S., U. Roman, S. Inam, S. Kanwal, and M. Bilal. 2022. “A Numerical Study of Rotating Bodewadt Flow of Micropolar Fluid Over Porous Disk.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 09544089221085139, doi:10.1177/09544089221085139.
  • Jawad, M., A. Saeed, A. Khan, and I. Ali. 2021. “Analytical Study of MHD Mixed Convection Flow for Maxwell Nanofluid with Variable Thermal Conductivity and Soret and Dufour Effects.” AIP Advances 11: 0035215. doi:10.1063/5.0029105.
  • Lund, L. A., Z. Omar, I. Khan, and S. Dero. 2019. “Multiple Solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 Nanofluids Flow Over Nonlinear Shrinking Surface.” Journal of Central South University 26: 1283–1293. doi:10.1007/s11771-019-4087-6.
  • Lund, L. A., Z. Omar, I. Khan, A. H. Seikh, E. S. M. Sherif, and K. S. Nisar. 2020. “Stability Analysis and Multiple Solution of Cu–Al2O3/H2O Nanofluid Contains Hybrid Nanomaterials Over a Shrinking Surface in the Presence of Viscous Dissipation.” Journal of Materials Research and Technology 9 (1): 421–432. doi:10.1016/j.jmrt.2019.10.071.
  • Mabood, F., G. P. Ashwinkumar, and N. Sandeep. 2020. “Effect of Nonlinear Radiation on 3D Unsteady MHD Stagnancy Flow of Fe3O4/Graphene Water Hybrid Nanofluid.” International Journal of Ambient Energy, doi:10.1080/01430750.2020.1831593.
  • Magyari, E., and A. Pantokratoras. 2011. “Note on the Effect of Thermal Radiation in the Linearized Rosseland Approximation on the Heat Transfer Characteristics of Various Boundary Layer Flows.” International Communications in Heat and Mass Transfer 38: 554–556. doi:10.1016/j.icheatmasstransfer.2011.03.006.
  • Mahapatra, T. R., and S. K. Nandy. 2013. “Stability of Dual Solutions in Stagnation-Point Flow and Heat Transfer Over a Porous Shrinking Sheet with Thermal Radiation.” Meccanica 48: 23–32. doi:10.1007/s11012-012-9579-5.
  • Mahapatra, T. R., S. K. Nandy, K. Vajravelu, and R. A. Van Gorder. 2012. “Stability Analysis of the Dual Solutions for Stagnation-Point Flow Over a non-Linearly Stretching Surface.” Meccanica 47: 1623–1632. doi:10.1007/s11012-012-9541-6.
  • Nabil, M. F., W. H. Azmi, K. A. Hamid, N. N. M. Zawawi, G. Priyandoko, and R. Mamat. 2017. “Thermo-physical Properties of Hybrid Nanofluids and Hybrid Nanolubricants: A Comprehensive Review on Performance.” International Communications in Heat and Mass Transfer 83: 30–39. doi:10.1016/j.icheatmasstransfer.2017.03.008.
  • Najib, N., N. Bachok, and N. Md. Arifin. 2016. “Stability of Dual Solutions in Boundary Layer Flow and Heat Transfer Over an Exponentially Shrinking Cylinder.” Indian Journal of Science and Technology 9 (48): 1–6. doi:10.17485/ijst/2016/v9i48/97740.
  • Nawaz, M., S. Rafiq, I. H. Qureshi, and S. Saleem. 2020. “Combined Effects of Partial Slip and Variable Diffusion Coefficient on Mass and Heat Transfer Subjected to Chemical Reaction.” Physica Scripta 95: 0035222. doi:10.1088/1402-4896/ab534b.
  • Oztop, H. F., and E. Abu-Nada. 2008. “Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids.” International Journal of Heat and Fluid Flow 29: 1326–1336. doi:10.1016/j.ijheatfluidflow.2008.04.009.
  • Pal, D., and G. Mandal. 2019. “Magneto-hydrodynamic Nonlinear Thermal Radiative Heat Transfer of Nanofluids Over a Flat Plate in a Porous Medium in Existence of Variable Thermal Conductivity and Chemical Reaction.” International Journal of Ambient Energy 42 (10): 1167–1177. doi:10.1080/01430750.2019.1592776.
  • Rostami, H. T., M. F. Najafabadi, K. Hosseinzadeh, and D. D. Ganji. 2022. “Investigation of Mixture-Based Dusty Hybrid Nanofluid Flow in Porous Media Affected by Magnetic Field Using RBF Method.” International Journal of Ambient Energy, doi:10.1080/01430750.2021.2023041.
  • Shi, Q. H., B. Ahmed, S. Ahmad, S. U. Khan, K. Sultan, M. N. Bashir, M. I. Khan, N. A. Shah, and J. D. Chung. 2021. “Plasma Hsp90 Levels in Patients with Systemic Sclerosis and Relation to Lung and Skin Involvement: A Cross-Sectional and Longitudinal Study.” Scientific Reports 11 (1): 1–12. doi:10.1038/s41598-020-79139-8.
  • Soomro, F. A., A. Zaib, R. U. Haq, and M. Sheikholeslami. 2019. “Dual Nature Solution of Water Functionalized Copper Nanoparticles Along a Permeable Shrinking Cylinder: Fdm Approach.” International Journal of Heat and Mass Transfer 129: 1242–1249. doi:10.1016/j.ijheatmasstransfer.2018.10.051.
  • Tshivhi, K. S., and O. D. Makinde. 2021. “Magneto-nanofluid Coolants Past Heated Shrinking/Stretching Surfaces: Dual Solutions and Stability Analysis.” Results in Engineering 10: 100229. doi:10.1016/j.rineng.2021.100229.
  • Usman, M., M. Hamid, T. Zubair, R. U. Haq, and W. Wang. 2018. “Cu-AlO/Water Hybrid Nanofluid Through a Permeable Surface in the Presence of Nonlinear Radiation and Variable Thermal Conductivity via LSM.” International Journal of Heat and Mass Transfer 126: 1347–1356. doi:10.1016/j.ijheatmasstransfer.2018.06.005.
  • Venkateswarlu, S., S. V. K. Varma, and P. D. Prasad. 2022. “MHD Flow of MoS2 and MgO Water-Based Nanofluid Through Porous Medium Over a Stretching Surface with Cattaneo-Christov Heat Flux Model and Convective Boundary Condition.” International Journal of Ambient Energy 43 (1): 2940–2949. doi:10.1080/01430750.2020.1785939.
  • Wahid, N. S., N. Md. Arifin, N. S. Khashiie, and I. Pop. 2020. “Hybrid Nanofluid Slip Flow Over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation.” Mathematics 9: 30. doi:10.3390/math9010030.
  • Wahid, N. S., N. Md. Arifin, N. S. Khashi’ie, I. Pop, N. Bachok, and M. E. H. Hafidzuddin. 2021. “Flow and Heat Transfer of Hybrid Nanofluid Induced by an Exponentially Stretching/Shrinking Curved Surface.” Case Studies in Thermal Engineering 25: 100982. doi:10.1016/j.csite.2021.100982.
  • Waini, I., A. Ishak, and I. Pop. 2022. “Multiple Solutions of the Unsteady Hybrid Nanofluid Flow Over a Rotating Disk with Stability Analysis.” European Journal of Mechanics - B/Fluids 94: 121–127. doi:10.1016/j.euromechflu.2022.02.011.
  • Wang, C. Y. 1990. “Liquid Film on an Unsteady Stretching Surface.” Quarterly of Applied Mathematics 48: 601–610. doi:10.1090/qam/1079908.
  • Weidman, P. D., D. G. Kubitschek, and A. M. J. Davis. 2006. “The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces.” International Journal of Engineering Science 44: 730–737. doi:10.1016/j.ijengsci.2006.04.005.
  • Xiangling, L., A. U. Khan, M. R. Khan, S. Nadeem, and S. U. Khan. 2019. “Oblique Stagnation Point Flow of Nanofluids Over Stretching/Shrinking Sheet with Cattaneo–Christov Heat Flux Model: Existence of Dual Solution.” Symmetry 11 (9): 1070. doi:10.3390/sym11091070.
  • Yan, L., S. Dero, I. Khan, I. A. Mari, D. Baleanu, K. S. Nisar, E.-S. M. Sherif, and H. S. Abdo. 2020. “Dual Solutions and Stability Analysis of Magnetized Hybrid Nanofluid with Joule Heating and Multiple Slip Conditions.” Processes 8 (3): 332. doi:10.3390/pr8030332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.