148
Views
4
CrossRef citations to date
0
Altmetric
Review

Solar still productivity improvement using nanofluids: a comprehensive review

ORCID Icon &
Pages 1396-1416 | Received 28 Sep 2022, Accepted 25 Jan 2023, Published online: 14 Feb 2023

References

  • Agrawal, A., R. Rana, and P. K. Srivastava. 2017. “Heat Transfer Coefficients and Productivity of a Single Slope Single Basin Solar Still in Indian Climatic Condition: Experimental and Theoretical Comparison.” Resource-Efficient Technologies 3 (4): 466–482. doi:10.1016/j.reffit.2017.05.003.
  • Akkala, S. R., A. K. Kaviti, T. ArunKumar, and V. S. Sikarwar. 2021. “Progress on Suspended Nanostructured Engineering Materials Powered Solar Distillation-a Review.” Renewable and Sustainable Energy Reviews 143: 110848. doi:10.1016/j.rser.2021.110848.
  • Al-Alawy, A. F. 2017. “A Numerical Analysis of Cu–Engine oil Nanofluid Forced Convection in Annular Tubes.” International Journal of Science and Technology 6 (2): 705–713.
  • Ali, N., J. A. Teixeira, and A. Addali. 2019. “Aluminium Nanofluids Stability: A comparison between the Conventional two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method.” Journal of Nanomaterials 2019: 3930572. doi:10.1155/2019/3930572.
  • Arunkumar, T., D. Murugesan, K. Raj, D. Denkenberger, C. Viswanathan, D. D. W. Rufuss, and R. Velraj. 2019. “Effect of Nano-Coated CuO Absorbers with PVA Sponges in Solar Water Desalting System.” Applied Thermal Engineering 148: 1416–1424. doi:10.1016/j.applthermaleng.2018.10.129.
  • Arunkumar, T., R. Velraj, D. Denkenberger, R. Sathyamurthy, K. Vinothkumar, K. Porkumaran, and A. Ahsan. 2016. “Effect of Heat Removal on Tubular Solar Desalting System.” Desalination 379: 24–33. doi:10.1016/j.desal.2015.10.007.
  • Attia, M. E. H., E. Elaloui, M. Abdelgaied, and A. Abdullah. 2022. “Experimental Study on Improving the Yield of Hemispherical Distillers Using CuO Nanoparticles and Cooling the Glass Cover.” Solar Energy Materials and Solar Cells 235: 111482. doi:10.1016/j.solmat.2021.111482.
  • Avramenko, A. A., I. V. Shevchuk, A. I. Tyrinov, and D. G. Blinov. 2014. “Heat Transfer at Film Condensation of Stationary Vapor with Nanoparticles Near a Vertical Plate.” Applied Thermal Engineering 73 (1): 391–398. doi:10.1016/j.applthermaleng.2014.07.070.
  • Ayoub, G., L. Dahdah, and I. Alameddine. 2015. “Transfer of Bacteria via Vapor in Solar Desalination Units.” Desalination and Water Treatment 53 (12): 3199–3207. doi:10.1080/19443994.2014.933042.
  • Ayoub, G. M., L. Dahdah, I. Alameddine, and L. Malaeb. 2014. “Vapor-induced Transfer of Bacteria in the Absence of Mechanical Disturbances.” Journal of Hazardous Materials 280: 279–287. doi:10.1016/j.jhazmat.2014.08.003.
  • Babar, H., and H. M. Ali. 2019. “Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges.” Journal of Molecular Liquids 281: 598–633. doi:10.1016/j.molliq.2019.02.102.
  • Bahiraei, M., S. Nazari, and H. Safarzadeh. 2021. “Modeling of Energy Efficiency for a Solar Still Fitted with Thermoelectric Modules by ANFIS and PSO-Enhanced Neural Network: A Nanofluid Application.” Powder Technology 385: 185–198. doi:10.1016/j.powtec.2021.03.001.
  • Bait, O., and M. Si–Ameur. 2018. “Enhanced Heat and Mass Transfer in Solar Stills Using Nanofluids: A Review.” Solar Energy 170: 694–722. doi:10.1016/j.solener.2018.06.020.
  • Balachandran, G. B., P. W. David, R. K. Mariappan, A. E. Kabeel, M. M. Athikesavan, and R. Sathyamurthy. 2020. “Improvising the Efficiency of Single-Sloped Solar Still Using Thermally Conductive Nano-Ferric Oxide.” Environmental Science and Pollution Research 27 (26): 32191–32204. doi:10.1007/s11356-019-06661-2.
  • Bani-Hani, E. H., C. Borgford, and K. Khanafer. 2016. “Applications of Porous Materials and Nanoparticles in Improving Solar Desalination Systems.” Journal of Porous Media 19 (11): 993–999. doi:10.1615/JPorMedia.v19.i11.50.
  • Bassyouni, M., A. Mansi, A. Elgabry, B. A. Ibrahim, O. A. Kassem, and R. Alhebeshy. 2020. “Utilization of Carbon Nanotubes in Removal of Heavy Metals from Wastewater: A Review of the CNTs’ Potential and Current Challenges.” Applied Physics A 126 (1): 1–33. doi:10.1007/s00339-019-3211-7.
  • Behera, A. K., R. Viswanath, C. Lakshmanan, T. Mathews, and M. Kamruddin. 2020. “Synthesis of Silicon Nanowalls Exhibiting Excellent Antireflectivity and Near Super-Hydrophobicity.” Nano-Structures & Nano-Objects 21: 100424. doi:10.1016/j.nanoso.2020.100424.
  • Boukraa, M., D. Bassir, N. Lebaal, T. Chekifi, M. Aissani, N. T. Ighil, and A. Mataoui. 2021. “Thermal Analysis of the Friction Stir Welding Process Based on Boundary Conditions and Operating Parameters.” Proceedings of the Estonian Academy of Sciences 70 (4). doi:10.3176/proc.2021.4.20.
  • Boukraa, M., and T. Chekifi. 2022. Transient Numerical Simulation the Friction Stir Welding Process of AA 2017 Alloys, Contact Parameter Effects on Thermal History and Material Flow. doi:10.4028/p-869879.
  • Boukraa, M., T. Chekifi, and N. Lebaal. 2022. “Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis.” Experimental Techniques, 1–15. doi:10.1007/s40799-022-00573-6.
  • Chaichan, M. T., and H. A. Kazem. 2018. “Single Slope Solar Distillator Productivity Improvement Using Phase Change Material and Al2O3 Nanoparticle.” Solar Energy 164: 370–381. doi:10.1016/j.solener.2018.02.049.
  • Chekifi, T. 2019. “Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles.” Fluid Dynamics & Materials Processing 15 (5): 545–555. doi:10.32604/fdmp.2019.01793.
  • Chekifi, T., and M. Boukraa. 2022a. “Thermal Efficiency Enhancement of Parabolic Trough Collectors: A Review.” Journal of Thermal Analysis and Calorimetry 147. doi:10.1007/s10973-022-11369-6.
  • Chekifi, T., and M. Boukraa. 2022b. “Thermocline Storage for Concentrated Solar Power Plants: Descriptive Review and Critical Analysis.” Journal of Energy Storage 55: 105773. doi:10.1016/j.est.2022.105773.
  • Chekifi, T., M. Boukraa, and M. Aissani. 2021. “DNS Using CLSVOF Method of Single Micro-Bubble Breakup and Dynamics in Flow Focusing.” Journal of Visualization 24: 1–12. doi:10.1007/s12650-020-00715-1.
  • Chekifi, T., B. Dennai, and R. Khelfaoui. 2017. “Computational Investigation of Droplets Behaviour Inside Passive Microfluidic Oscillator.” Fluid Dynamics & Materials Processing 13 (3): 173–187. doi:10.3970/fdmp.2017.013.173.
  • Chekifi, T., and R. Khelfaoui. 2018. “Effect of Geometrical Parameters on Vortex Fluidic Oscillators Operating with Gases and Liquids.” Fluid Dynamics & Materials Processing 14 (3): 201–212. doi:10.3970/fdmp.2018.00322.
  • Chen, W., C. Zou, X. Li, and L. Li. 2017. “Experimental Investigation of SiC Nanofluids for Solar Distillation System: Stability, Optical Properties and Thermal Conductivity with Saline Water-Based Fluid.” International Journal of Heat and Mass Transfer 107: 264–270. doi:10.1016/j.ijheatmasstransfer.2016.11.048.
  • Chen, W., C. Zou, X. Li, and H. Liang. 2019. “Application of Recoverable Carbon Nanotube Nanofluids in Solar Desalination System: An Experimental Investigation.” Desalination 451: 92–101. doi:10.1016/j.desal.2017.09.025.
  • Choi, S. U., and J. A. Eastman. 2001. Enhanced Heat Transfer Using Nanofluids. Argonne, IL: Argonne National Lab.(ANL).
  • Colangelo, G., E. Favale, A. De Risi, and D. Laforgia. 2013. “A new Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids.” Applied Energy 111: 80–93. doi:10.1016/j.apenergy.2013.04.069.
  • Colangelo, G., E. Favale, P. Miglietta, A. de Risi, M. Milanese, and D. Laforgia. 2015. “Experimental Test of an Innovative High Concentration Nanofluid Solar Collector.” Applied Energy 154: 874–881. doi:10.1016/j.apenergy.2015.05.031.
  • Cosgrove, T. 2010. Colloid Science: Principles, Methods and Applications. John Wiley & Sons.
  • Daniel, M.-C., and D. Astruc. 2004. “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology.” Chemical Reviews 104 (1): 293–346. doi:10.1021/cr030698+.
  • Devarajan, M., N. Parasumanna Krishnamurthy, M. Balasubramanian, B. Ramani, S. Wongwises, K. Abd El-Naby, and R. Sathyamurthy. 2018. “Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid.” Micro & Nano Letters 13 (5): 617–621. doi:10.1049/mnl.2017.0029.
  • Devendiran, D. K., and V. A. Amirtham. 2016. “A Review on Preparation, Characterization, Properties and Applications of Nanofluids.” Renewable and Sustainable Energy Reviews 60: 21–40. doi:10.1016/j.rser.2016.01.055.
  • Dresselhaus, M. 2004. “Nanotube Antennas.” Nature 432 (7020): 959–960. doi:10.1038/432959a.
  • Du, M., and G. Tang. 2015. “Optical Property of Nanofluids with Particle Agglomeration.” Solar Energy 122: 864–872. doi:10.1016/j.solener.2015.10.009.
  • Duan, H., and Y. Xuan. 2014. “Enhanced Optical Absorption of the Plasmonic Nanoshell Suspension Based on the Solar Photocatalytic Hydrogen Production System.” Applied Energy 114: 22–29. doi:10.1016/j.apenergy.2013.09.035.
  • Eastman, J. A., U. Choi, S. Li, L. Thompson, and S. Lee. 1996. “Enhanced Thermal Conductivity Through the Development of Nanofluids.” MRS Online Proceedings Library (OPL) 457. doi:10.1557/PROC-457-3.
  • El-Gazar, E., W. Zahra, H. Hassan, and S. I. Rabia. 2021. “Fractional Modeling for Enhancing the Thermal Performance of Conventional Solar Still Using Hybrid Nanofluid: Energy and Exergy Analysis.” Desalination 503: 114847. doi:10.1016/j.desal.2020.114847.
  • Elango, T., A. Kannan, and K. K. Murugavel. 2015. “Performance Study on Single Basin Single Slope Solar Still with Different Water Nanofluids.” Desalination 360: 45–51. doi:10.1016/j.desal.2015.01.004.
  • Elashmawy, M., and F. Alshammari. 2020. “Atmospheric Water Harvesting from low Humid Regions Using Tubular Solar Still Powered by a Parabolic Concentrator System.” Journal of Cleaner Production 256: 120329. doi:10.1016/j.jclepro.2020.120329.
  • Elias, J., M. Bechelany, I. Utke, R. Erni, D. Hosseini, J. Michler, and L. Philippe. 2012. “Urchin-inspired Zinc Oxide as Building Blocks for Nanostructured Solar Cells.” Nano Energy 1 (5): 696–705. doi:10.1016/j.nanoen.2012.07.002.
  • El Mghari, H., H. Louahlia-Gualous, and E. Lepinasse. 2015. “Numerical Study of Nanofluid Condensation Heat Transfer in a Square Microchannel.” Numerical Heat Transfer, Part A: Applications 68 (11): 1242–1265. doi:10.1080/10407782.2015.1037178.
  • Esfe, M. H., A. A. A. Arani, M. Rezaie, W.-M. Yan, and A. Karimipour. 2015. “Experimental Determination of Thermal Conductivity and Dynamic Viscosity of Ag–MgO/Water Hybrid Nanofluid.” International Communications in Heat and Mass Transfer 66: 189–195. doi:10.1016/j.icheatmasstransfer.2015.06.003.
  • Essa, F., A. H. Elsheikh, A. A. Algazzar, R. Sathyamurthy, M. K. A. Ali, M. Abd Elaziz, and K. Salman. 2020. “Eco-friendly Coffee-Based Colloid for Performance Augmentation of Solar Stills.” Process Safety and Environmental Protection 136: 259–267. doi:10.1016/j.psep.2020.02.005.
  • Gakare, A. 2019. “A Review on Nanofluids: Preparation and Applications.” A Journal of Nanotechnology and Its Applications 21 (1): 21–35. doi:10.1155/2012/435873.
  • Ghadimi, A., R. Saidur, and H. Metselaar. 2011. “A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions.” International Journal of Heat and Mass Transfer 54 (17–18): 4051–4068. doi:10.1016/j.ijheatmasstransfer.2011.04.014.
  • Godson, L., B. Raja, D. M. Lal, and S. Wongwises. 2010. “Enhancement of Heat Transfer Using Nanofluids—an Overview.” Renewable and Sustainable Energy Reviews 14 (2): 629–641. doi:10.1016/j.rser.2009.10.004.
  • Gorji, T. B., A. Ranjbar, and S. Mirzababaei. 2015. “Optical Properties of Carboxyl Functionalized Carbon Nanotube Aqueous Nanofluids as Direct Solar Thermal Energy Absorbers.” Solar Energy 119: 332–342. doi:10.1016/j.solener.2015.07.012.
  • Grewal, R., and M. Kumar. 2021. “An Experimental Study on Solar Evaporation of Sugarcane Juice.” Heat Transfer 50 (8): 8378–8402. doi:10.1002/htj.22281.
  • Grewal, R., and M. Kumar. 2022a. “A Comprehensive Review on Stepped Solar Still and Induction Heating Applications.” Materials Today: Proceedings 56: 2696–2703. doi:10.1016/j.matpr.2021.09.376.
  • Grewal, R., and M. Kumar. 2022b. “Application of Concatenated Stepped Solar Still System (CS4) for RO-Waste-Water Purification: An Experimental Study.” Environmental Science and Pollution Research, 1–17.
  • Grewal, R., and M. Kumar. 2022c. “Comparative Study on Stepped Solar Distillers Internally Loaded with Different Masses of Phase Change Material.” International Journal of Energy Research 46 (9). doi:10.1002/er.8071.
  • Grewal, R., and M. Kumar. 2022d. “Efficacy of Mass of Energy Storage Material on the Performance of a Solar Driven Stepped Series System During Sugarcane Juice Concentration.” Solar Energy 243: 300–314. doi:10.1016/j.solener.2022.08.009.
  • Grewal, R., and M. Kumar. 2022e. “Investigations on Effect of Mass of Phase Change Material on Sugarcane Juice Concentration and Distillate Production in a Stepped Solar System.” Journal of Energy Storage 52: 104878. doi:10.1016/j.est.2022.104878.
  • Grewal, R., and M. Kumar. 2022f. “Performance Evaluation of a Concatenated Stepped Solar Still System Loaded with Different Masses of Energy Storage Material.” Energy 259: 125005. doi:10.1016/j.energy.2022.125005.
  • Grewal, R., H. Manchanda, and M. Kumar. 2018. “A Review on Applications of Phase Change Materials in Solar Distillation.” Conf: 2nd Int Conf on Emer Tren in Sci Engg & Tech.
  • Gupta, B., A. Kumar, and P. V. Baredar. 2017. “Experimental Investigation on Modified Solar Still Using Nanoparticles and Water Sprinkler Attachment.” Frontiers in Materials 4: 23. doi:10.3389/fmats.2017.00023.
  • Hafs, H., A. Zaaoumi, O. Ansari, A. Bah, M. Asbik, and M. Malha. 2018. “Effect of the Nanofluid (Brackish Water/Al 2 O 3) on the Passive Solar Still Desalination Performance with Heat Storage System.” 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), IEEE.
  • Ho, C.-J., M. Chen, and Z. Li. 2008. “Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects due to Uncertainties of Viscosity and Thermal Conductivity.” International Journal of Heat and Mass Transfer 51 (17-18): 4506–4516. doi:10.1016/j.ijheatmasstransfer.2007.12.019.
  • Hordy, N., F. Aristizabal, and S. Coulombe. 2015. “Volumetric Optical Heating of Carbon Nanotube Nanofluids.” International Journal of Heat and Mass Transfer 88: 133–137. doi:10.1016/j.ijheatmasstransfer.2015.04.066.
  • Huminic, G., and A. Huminic. 2011. “Heat Transfer Characteristics of a Two-Phase Closed Thermosyphons Using Nanofluids.” Experimental Thermal and Fluid Science 35 (3): 550–557. doi:10.1016/j.expthermflusci.2010.12.009.
  • Hussein, A. K. 2016. “Applications of Nanotechnology to Improve the Performance of Solar Collectors–Recent Advances and Overview.” Renewable and Sustainable Energy Reviews 62: 767–792. doi:10.1016/j.rser.2016.04.050.
  • Iqbal, A., M. S. Mahmoud, E. T. Sayed, K. Elsaid, M. A. Abdelkareem, H. Alawadhi, and A. Olabi. 2021. “Evaluation of the Nanofluid-Assisted Desalination Through Solar Stills in the Last Decade.” Journal of Environmental Management 277: 111415. doi:10.1016/j.jenvman.2020.111415.
  • Kabeel, A., M. Abdelgaied, and A. Eisa. 2019. “Effect of Graphite Mass Concentrations in a Mixture of Graphite Nanoparticles and Paraffin wax as Hybrid Storage Materials on Performances of Solar Still.” Renewable Energy 132: 119–128. doi:10.1016/j.renene.2018.07.147.
  • Kabeel, A., and E. M. El-Said. 2014. “Applicability of Flashing Desalination Technique for Small Scale Needs Using a Novel Integrated System Coupled with Nanofluid-Based Solar Collector.” Desalination 333 (1): 10–22. doi:10.1016/j.desal.2013.11.021.
  • Kabeel, A., Z. Omara, and F. Essa. 2014. “Improving the Performance of Solar Still by Using Nanofluids and Providing Vacuum.” Energy Conversion and Management 86: 268–274. doi:10.1016/j.enconman.2014.05.050.
  • Kabeel, A., Z. Omara, and F. Essa. 2017a. “Numerical Investigation of Modified Solar Still Using Nanofluids and External Condenser.” Journal of the Taiwan Institute of Chemical Engineers 75: 77–86. doi:10.1016/j.jtice.2017.01.017.
  • Kabeel, A., Z. Omara, F. Essa, and A. Abdullah. 2016. “Solar Still with Condenser–A Detailed Review.” Renewable and Sustainable Energy Reviews 59 (C): 839–857. doi:10.1016/j.rser.2016.01.020.
  • Kabeel, A., Z. M. Omara, F. Essa, A. Abdullah, T. Arunkumar, and R. Sathyamurthy. 2017b. “Augmentation of a Solar Still Distillate Yield via Absorber Plate Coated with Black Nanoparticles.” Alexandria Engineering Journal 56 (4): 433–438. doi:10.1016/j.aej.2017.08.014.
  • Kaloudis, E., E. Papanicolaou, and V. Belessiotis. 2016. “Numerical Simulations of a Parabolic Trough Solar Collector with Nanofluid Using a Two-Phase Model.” Renewable Energy 97: 218–229. doi:10.1016/j.renene.2016.05.046.
  • Kamyar, A., R. Saidur, and M. Hasanuzzaman. 2012. “Application of Computational Fluid Dynamics (CFD) for Nanofluids.” International Journal of Heat and Mass Transfer 55 (15–16): 4104–4115. doi:10.1016/j.ijheatmasstransfer.2012.03.052.
  • Kaviti, A. K., A. S. Ram, A. A. Kumari, and S. Hussain. 2021. “A Brief Review on High-Performance Nano Materials in Solar Desalination.” Materials Today: Proceedings 44: 282–288. doi:10.1016/j.matpr.2020.09.466.
  • Kitano, T., T. Kataoka, and T. Shirota. 1981. “An Empirical Equation of the Relative Viscosity of Polymer Melts Filled with Various Inorganic Fillers.” Rheologica Acta 20 (2): 207–209. doi:10.1007/BF01513064.
  • Koilraj, G. M., K. P. Senthil, G. Jemilda, and J. S. Sherin. 2012. “Effect of Nanofluids in a Modified Vacuum Single Basin Solar Still.” International Journal of Scientific & Engineering Research 3 (1): 1–7. doi:10.15373/22778179/JAN2014/1.
  • Lal, R. K., S. Mishra, J. Dwivedi, and H. Dwivedi. 2017. “A Comprehensive Study of the Different Parameters of Solar Still.” Materials Today: Proceedings 4 (2): 3572–3580. doi:10.1016/j.matpr.2017.02.249.
  • Lattuada, M., P. Sandkühler, H. Wu, J. Sefcik, and M. Morbidelli. 2003. “Aggregation Kinetics of Polymer Colloids in Reaction Limited Regime: Experiments and Simulations.” Advances in Colloid and Interface Science 103 (1): 33–56. doi:10.1016/S0001-8686(02)00082-9.
  • Madiouli, J., A. Lashin, I. Shigidi, I. A. Badruddin, and A. Kessentini. 2020. “Experimental Study and Evaluation of Single Slope Solar Still Combined with Flat Plate Collector, Parabolic Trough and Packed bed.” Solar Energy 196: 358–366. doi:10.1016/j.solener.2019.12.027.
  • Mahian, O., A. Kianifar, S. Z. Heris, D. Wen, A. Z. Sahin, and S. Wongwises. 2017. “Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped with a Heat Exchanger.” Nano Energy 36: 134–155. doi:10.1016/j.nanoen.2017.04.025.
  • Mahian, O., A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises. 2013. “A Review of the Applications of Nanofluids in Solar Energy.” International Journal of Heat and Mass Transfer 57 (2): 582–594. doi:10.1016/j.ijheatmasstransfer.2012.10.037.
  • Manchanda, H., and M. Kumar. 2017. “Experimental Investigation of a Solar Water Distillation-cum-Drying Unit.” International Journal of Green Energy 14 (4): 385–394. doi:10.1080/15435075.2016.1261706.
  • Manchanda, H., and M. Kumar. 2021. “Thermo-techno-economical Experimental Evaluation of a Stepped Solar Distillation System with Energy Loss Utilization.” Process Safety and Environmental Protection 148: 473–481. doi:10.1016/j.psep.2020.10.032.
  • Manchanda, H., and M. Kumar. 2022. “Performance Evaluation of a Locally Designed Stepped Solar Distillation-cum-Active Drying Unit.” Journal of Thermal Analysis and Calorimetry 147 (6): 4383–4395. doi:10.1007/s10973-021-10835-x.
  • Manokar, A. M., K. K. Murugavel, and G. Esakkimuthu. 2014. “Different Parameters Affecting the Rate of Evaporation and Condensation on Passive Solar Still–A Review.” Renewable and Sustainable Energy Reviews 38: 309–322. doi:10.1016/j.rser.2014.05.092.
  • Mohiuddin, S. A., A. K. Kaviti, S. R. Atchuta, S. Sakthivel, T. Harish, K. V. Kumar, T. S. Rao, A. Thaker, K. V. Reddy, and A. M. N. Sai. 2022a. “Performance Analysis of non-Contact Nanostructure Solar Desalination System by Varying Water Depth at a Constant air gap.” Solar Energy 247: 485–498. doi:10.1016/j.solener.2022.10.042.
  • Mohiuddin, S. A., A. K. Kaviti, T. S. Rao, and S. Atchuta. 2022b. “Experimental Assessment of Productivity and Sustainability of Nanoporous Cr-Mn-Fe Oxide Nanocoating in Solar-Powered Desalination.” Process Safety and Environmental Protection 162: 61–71. doi:10.1016/j.psep.2022b.03.038.
  • Mohiuddin, S. A., A. K. Kaviti, T. S. Rao, and S. Sakthivel. 2022c. “Performance Analysis of a Contactless Nanostructure in Solar-Powered Desalination System.” Environmental Science and Pollution Research, 1–12. doi:10.1007/s11356-022-23130-5.
  • Mohiuddin, S. A., A. K. Kaviti, and T. Srinivasa Rao. 2021. “Nanostructures as High Absorption Energy Materials—A Review.” Recent Advances in Sustainable Technologies, 315–323. doi:10.1007/978-981-16-0976-3_30.
  • Mondragón, R., D. Sánchez, R. Cabello, R. Llopis, and J. E. Juliá. 2019. “Flat Plate Solar Collector Performance Using Alumina Nanofluids: Experimental Characterization and Efficiency Tests.” PloS one 14 (2): e0212260. doi:10.1371/journal.pone.0212260.
  • Mukherjee, K., and G. Tiwari. 1986. “Economic Analyses of Various Designs of Conventional Solar Stills.” Energy Conversion and Management 26 (2): 155–157. doi:10.1016/0196-8904(86)90049-X.
  • Nazari, S., H. Safarzadeh, and M. Bahiraei. 2019a. “Experimental and Analytical Investigations of Productivity, Energy and Exergy Efficiency of a Single Slope Solar Still Enhanced with Thermoelectric Channel and Nanofluid.” Renewable Energy 135: 729–744. doi:10.1016/j.renene.2018.12.059.
  • Nazari, S., H. Safarzadeh, and M. Bahiraei. 2019b. “Performance Improvement of a Single Slope Solar Still by Employing Thermoelectric Cooling Channel and Copper Oxide Nanofluid: An Experimental Study.” Journal of Cleaner Production 208: 1041–1052. doi:10.1016/j.jclepro.2018.10.194.
  • Omara, Z., A. Kabeel, and A. Abdullah. 2017. “A Review of Solar Still Performance with Reflectors.” Renewable and Sustainable Energy Reviews 68: 638–649. doi:10.1016/j.rser.2016.10.031.
  • Omara, Z., A. Kabeel, and F. Essa. 2015. “Effect of Using Nanofluids and Providing Vacuum on the Yield of Corrugated Wick Solar Still.” Energy Conversion and Management 103: 965–972. doi:10.1016/j.enconman.2015.07.035.
  • Pak, B. C., and Y. I. Cho. 1998. “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles.” Experimental Heat Transfer an International Journal 11 (2): 151–170. doi:10.1080/08916159808946559.
  • Panchal, H., R. Sathyamurthy, A. Kabeel, S. El-Agouz, D. Rufus, T. Arunkumar, A. Muthu Manokar, D. P. Winston, A. Sharma, and N. Thakar. 2019. “Annual Performance Analysis of Adding Different Nanofluids in Stepped Solar Still.” Journal of Thermal Analysis and Calorimetry 138 (5): 3175–3182. doi:10.1007/s10973-019-08346-x.
  • Parsa, S. M., A. Rahbar, M. Koleini, S. Aberoumand, M. Afrand, and M. Amidpour. 2020. “A Renewable Energy-Driven Thermoelectric-Utilized Solar Still with External Condenser Loaded by Silver/nanofluid for Simultaneously Water Disinfection and Desalination.” Desalination 480: 114354. doi:10.1016/j.desal.2020.114354.
  • Peng, G., S. W. Sharshir, Y. Wang, M. An, D. Ma, J. Zang, A. Kabeel, and N. Yang. 2021. “Potential and Challenges of Improving Solar Still by Micro/Nano-Particles and Porous Materials-A Review.” Journal of Cleaner Production 311: 127432. doi:10.1016/j.jclepro.2021.127432.
  • Prashanth, P., R. Raveendra, R. Hari Krishna, S. Ananda, N. Bhagya, B. Nagabhushana, K. Lingaraju, and H. Raja Naika. 2015. “Synthesis, Characterizations, Antibacterial and Photoluminescence Studies of Solution Combustion-Derived α-Al2O3 Nanoparticles.” Journal of Asian Ceramic Societies 3 (3): 345–351. doi:10.1016/j.jascer.2015.07.001.
  • Qaiser, R., M. M. Khan, L. A. Khan, and M. Irfan. 2021. “Melting Performance Enhancement of PCM Based Thermal Energy Storage System Using Multiple Tubes and Modified Shell Designs.” Journal of Energy Storage 33: 102161. doi:10.1016/j.est.2020.102161.
  • Rahbar, N., and J. A. Esfahani. 2012. “Estimation of Convective Heat Transfer Coefficient in a Single-Slope Solar Still: A Numerical Study.” Desalination and Water Treatment 50 (1–3): 387–396. doi:10.1080/19443994.2012.720442.
  • Rahbar, N., and J. A. Esfahani. 2013. “Productivity Estimation of a Single-Slope Solar Still: Theoretical and Numerical Analysis.” Energy 49: 289–297. doi:10.1016/j.energy.2012.10.023.
  • Rahbar, N., J. A. Esfahani, and E. Fotouhi-Bafghi. 2015. “Estimation of Convective Heat Transfer Coefficient and Water-Productivity in a Tubular Solar Still–CFD Simulation and Theoretical Analysis.” Solar Energy 113: 313–323. doi:10.1016/j.solener.2014.12.032.
  • Raj, S. V., and A. M. Manokar. 2017. “Design and Analysis of Solar Still.” Materials Today: Proceedings 4 (8): 9179–9185. doi:10.1016/j.matpr.2017.07.275.
  • Rajasekhar, G., and M. Eswaramoorthy. 2015. “Performance Evaluation on Solar Still Integrated with Nano-Composite Phase Change Materials.” Applied Solar Energy 51 (1): 15–21. doi:10.3103/S0003701X15010119.
  • Rashidi, S., S. Akar, M. Bovand, and R. Ellahi. 2018. “Volume of Fluid Model to Simulate the Nanofluid Flow and Entropy Generation in a Single Slope Solar Still.” Renewable Energy 115: 400–410. doi:10.1016/j.renene.2017.08.059.
  • Rashidi, S., M. Bovand, and J. A. Esfahani. 2016. “Optimization of Partitioning Inside a Single Slope Solar Still for Performance Improvement.” Desalination 395: 79–91. doi:10.1016/j.desal.2016.05.026.
  • Rashidi, S., M. Bovand, N. Rahbar, and J. A. Esfahani. 2018. “Steps Optimization and Productivity Enhancement in a Nanofluid Cascade Solar Still.” Renewable Energy 118: 536–545. doi:10.1016/j.renene.2017.11.048.
  • Rufuss, D. D. W., L. Suganthi, S. Iniyan, and P. Davies. 2018. “Effects of Nanoparticle-Enhanced Phase Change Material (NPCM) on Solar Still Productivity.” Journal of Cleaner Production 192: 9–29. doi:10.1016/j.jclepro.2018.04.201.
  • Sabiha, M., R. Saidur, S. Hassani, Z. Said, and S. Mekhilef. 2015. “Energy Performance of an Evacuated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids.” Energy Conversion and Management 105: 1377–1388. doi:10.1016/j.enconman.2015.09.009.
  • Safaei, M. R., H. R. Goshayeshi, and I. Chaer. 2019. “Solar Still Efficiency Enhancement by using Graphene Oxide/paraffin Nano-PCM.” Energies 12 (10): 2002. doi:10.3390/en12102002.
  • Sahota, L., and G. Tiwari. 2016a. “Effect of Al2O3 Nanoparticles on the Performance of Passive Double Slope Solar Still.” Solar Energy 130: 260–272. doi:10.1016/j.solener.2016.02.018.
  • Sahota, L., and G. Tiwari. 2016b. “Effect of Nanofluids on the Performance of Passive Double Slope Solar Still: A Comparative Study Using Characteristic Curve.” Desalination 388: 9–21. doi:10.1016/j.desal.2016.02.039.
  • Sahota, L., and G. Tiwari. 2017. “Energy Matrices, Enviroeconomic and Exergoeconomic Analysis of Passive Double Slope Solar Still with Water Based Nanofluids.” Desalination 409: 66–79. doi:10.1016/j.desal.2017.01.012.
  • Saidur, R., S. Kazi, M. Hossain, M. Rahman, and H. Mohammed. 2011. “A Review on the Performance of Nanoparticles Suspended with Refrigerants and Lubricating Oils in Refrigeration Systems.” Renewable and Sustainable Energy Reviews 15 (1): 310–323. doi:10.1016/j.rser.2010.08.018.
  • Saidur, R., K. Leong, and H. A. Mohammed. 2011. “A Review on Applications and Challenges of Nanofluids.” Renewable and Sustainable Energy Reviews 15 (3): 1646–1668. doi:10.1016/j.rser.2010.11.035.
  • Saleh, S. M., A. M. Soliman, M. A. Sharaf, V. Kale, and B. Gadgil. 2017. “Influence of Solvent in the Synthesis of Nano-Structured ZnO by Hydrothermal Method and Their Application in Solar-Still.” Journal of Environmental Chemical Engineering 5 (1): 1219–1226. doi:10.1016/j.jece.2017.02.004.
  • Sampathkumar, K., T. Arjunan, P. Pitchandi, and P. Senthilkumar. 2010. “Active Solar Distillation—A Detailed Review.” Renewable and Sustainable Energy Reviews 14 (6): 1503–1526. doi:10.1016/j.rser.2010.01.023.
  • Sathyamurthy, R., A. E. Kabeel, E. S. El-Agouz, D. Rufus, H. Panchal, T. Arunkumar, A. M. Manokar, and D. G. P. Winston. 2019. “Experimental Investigation on the Effect of MgO and TiO2 Nanoparticles in Stepped Solar Still.” International Journal of Energy Research 43 (8): 3295–3305. doi:10.1002/er.4460.
  • Seyednezhad, M., M. Sheikholeslami, J. A. Ali, A. Shafee, and T. K. Nguyen. 2020. “Nanoparticles for Water Desalination in Solar Heat Exchanger.” Journal of Thermal Analysis and Calorimetry 139 (3): 1619–1636. doi:10.1007/s10973-019-08634-6.
  • Sfeir, A. A., and G. Guarracino. 1981. Ingénierie des systèmes solaires: applications à l'habitat, Technique et documentation-Lavoisier.
  • Shanmugan, S., F. Essa, S. Gorjian, A. Kabeel, R. Sathyamurthy, and A. M. Manokar. 2020. “Experimental Study on Single Slope Single Basin Solar Still Using TiO2 Nano Layer for Natural Clean Water Invention.” Journal of Energy Storage 30: 101522. doi:10.1016/j.est.2020.101522.
  • Shanmugan, S., S. Palani, and B. Janarthanan. 2018. “Productivity Enhancement of Solar Still by PCM and Nanoparticles Miscellaneous Basin Absorbing Materials.” Desalination 433: 186–198. doi:10.1016/j.desal.2017.11.045.
  • Sharshir, S. W., M. Abd Elaziz, and M. Elkadeem. 2020. “Enhancing Thermal Performance and Modeling Prediction of Developed Pyramid Solar Still Utilizing a Modified Random Vector Functional Link.” Solar Energy 198: 399–409. doi:10.1016/j.solener.2020.01.061.
  • Sharshir, S. W., M. A. Eltawil, A. M. Algazzar, R. Sathyamurthy, and A. Kandeal. 2020. “Performance Enhancement of Stepped Double Slope Solar Still by Using Nanoparticles and Linen Wicks: Energy, Exergy and Economic Analysis.” Applied Thermal Engineering 174: 115278. doi:10.1016/j.applthermaleng.2020.115278.
  • Sharshir, S. W., G. Peng, A. Elsheikh, E. M. Edreis, M. A. Eltawil, T. Abdelhamid, A. Kabeel, J. Zang, and N. Yang. 2018. “Energy and Exergy Analysis of Solar Stills with Micro/Nano Particles: A Comparative Study.” Energy Conversion and Management 177: 363–375. doi:10.1016/j.enconman.2018.09.074.
  • Sharshir, S., G. Peng, L. Wu, F. Essa, A. Kabeel, and N. Yang. 2017a. “The Effects of Flake Graphite Nanoparticles, Phase Change Material, and Film Cooling on the Solar Still Performance.” Applied Energy 191: 358–366. doi:10.1016/j.apenergy.2017.01.067.
  • Sharshir, S., G. Peng, L. Wu, N. Yang, F. Essa, A. Elsheikh, S. I. Mohamed, and A. Kabeel. 2017b. “Enhancing the Solar Still Performance Using Nanofluids and Glass Cover Cooling: Experimental Study.” Applied Thermal Engineering 113: 684–693. doi:10.1016/j.applthermaleng.2016.11.085.
  • Shoeibi, S., S. Ali Agha Mirjalily, H. Kargarsharifabad, H. Panchal, and R. Dhivagar. 2022a. “Comparative Study of Double-Slope Solar Still, Hemispherical Solar Still, and Tubular Solar Still Using Al2O3/Water Film Cooling: A Numerical Study and CO2 Mitigation Analysis.” Environmental Science and Pollution Research, 1–17. doi:10.1007/s11356-022-20437-1.
  • Shoeibi, S., H. Kargarsharifabad, N. Rahbar, G. Ahmadi, and M. R. Safaei. 2022b. “Performance Evaluation of a Solar Still using Hybrid Nanofluid Glass Cooling-CFD Simulation and Environmental Analysis.” Sustainable Energy Technologies and Assessments 49: 101728. doi:10.1016/j.seta.2021.101728.
  • Singh, A. K., D. Singh, V. Dwivedi, G. Tiwari, and A. Gupta. 2020. “Water Purification Using Solar Still with/Without Nano-Fluid: A Review.” Materials Today: Proceedings 21: 1700–1706. doi:10.1016/j.matpr.2019.12.025.
  • Singh, A. K., R. Yadav, D. Mishra, R. Prasad, L. Gupta, and P. Kumar. 2020. “Active Solar Distillation Technology: A Wide Overview.” Desalination 493: 114652. doi:10.1016/j.desal.2020.114652.
  • Sundar, L. S., M. K. Singh, M. Ferro, and A. C. Sousa. 2017. “Experimental Investigation of the Thermal Transport Properties of Graphene Oxide/Co3O4 Hybrid Nanofluids.” International Communications in Heat and Mass Transfer 84: 1–10. doi:10.1016/j.icheatmasstransfer.2017.03.001.
  • Sundar, L. S., M. K. Singh, and A. C. Sousa. 2014. “Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids.” International Communications in Heat and Mass Transfer 52: 73–83. doi:10.1016/j.icheatmasstransfer.2014.01.012.
  • Supply, W. U. J. W., and S. M. Programme. 2015. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment. World Health Organization.
  • Thakur, A. K., D. Agarwal, P. Khandelwal, and S. Dev. 2018. “Comparative Study and Yield Productivity of Nano-Paint and Nano-Fluid Used in a Passive-Type Single Basin Solar Still.” Advances in Smart Grid and Renewable Energy, Springer, 709–716. doi:10.1007/978-981-10-4286-7_70.
  • Thakur, V. K., M. Gaur, and M. Sagar. 2020. “Role of Advance Solar Desalination Technique for Sustainable Development.” International Conference on Sustainable and Innovative Solutions for Current Challenges in Engineering & Technology, Springer.
  • Thakur, A. K., P. Khandelwal, and B. Sharma. 2017. “Productivity Comparison of Solar Still with Nano Fluid and Phase Changing Material with Same Depth of Water.” International Conference on Nano for Energy and Water, Springer.
  • Tiwari, G., and H. Garg. 1984. “Studies on Various Designs of Solar Distillation Systems.” Solar & Wind Technology 1 (3): 161–165. doi:10.1016/0741-.983X(84)90003-1
  • Tiwari, G., S. Sharma, and M. Sodha. 1984. “Performance of a Double Condensing Multiple Wick Solar Still.” Energy Conversion and Management 24 (2): 155–159. doi:10.1016/0196-8904(84)90028-1.
  • Tiwari, G., H. Singh, and R. Tripathi. 2003. “Present Status of Solar Distillation.” Solar Energy 75 (5): 367–373. doi:10.1016/j.solener.2003.07.005.
  • Tsoutsos, T., N. Frantzeskaki, and V. Gekas. 2005. “Environmental Impacts from the Solar Energy Technologies.” Energy Policy 33 (3): 289–296. doi:10.1016/S0301-4215(03)00241-6.
  • Turkyilmazoglu, M. 2015. “Analytical Solutions of Single and Multi-Phase Models for the Condensation of Nanofluid Film Flow and Heat Transfer.” European Journal of Mechanics-B/Fluids 53: 272–277. doi:10.1016/j.euromechflu.2015.06.004.
  • Turkyilmazoglu, M. 2017. “Condensation of Laminar Film Over Curved Vertical Walls Using Single and two-Phase Nanofluid Models.” European Journal of Mechanics-B/Fluids 65: 184–191. doi:10.1016/j.euromechflu.2017.04.007.
  • Ul Islam, B., A. Mukhtar, S. Saqib, A. Mahmood, S. Rafiq, A. Hameed, M. S. Khan, K. Hamid, S. Ullah, and A. G. Al-Sehemi. 2020. “Thermal Conductivity of Multiwalled Carbon Nanotubes-Kapok Seed Oil-Based Nanofluid.” Chemical Engineering & Technology 43 (8): 1638–1647. doi:10.1002/ceat.201900600.
  • Velmurugan, V., and K. Srithar. 2011. “Performance Analysis of Solar Stills Based on Various Factors Affecting the Productivity—a Review.” Renewable and Sustainable Energy Reviews 15 (2): 1294–1304. doi:10.1016/j.rser.2010.10.012.
  • Vermahmoudi, Y., S. Peyghambarzadeh, S. Hashemabadi, and M. Naraki. 2014. “Experimental Investigation on Heat Transfer Performance of Fe2O3/Water Nanofluid in an air-Finned Heat Exchanger.” European Journal of Mechanics-B/Fluids 44: 32–41. doi:10.1016/j.euromechflu.2013.10.002.
  • Warrier, P., and A. Teja. 2011. “Effect of Particle Size on the Thermal Conductivity of Nanofluids Containing Metallic Nanoparticles.” Nanoscale Research Letters 6 (1): 1–6. doi:10.1186/1556-276X-6-247.
  • Wu, Y., L. Zhou, X. Du, and Y. Yang. 2015. “Optical and Thermal Radiative Properties of Plasmonic Nanofluids Containing Core–shell Composite Nanoparticles for Efficient Photothermal Conversion.” International Journal of Heat and Mass Transfer 82: 545–554. doi:10.1016/j.ijheatmasstransfer.2014.11.026.
  • Xie, X., Y. Li, T. Zhang, and H. H. Fang. 2006. “Bacterial Survival in Evaporating Deposited Droplets on a Teflon-Coated Surface.” Applied Microbiology and Biotechnology 73 (3): 703–712. doi:10.1007/s00253-006-0492-5.
  • Yadav, S., and K. Sudhakar. 2015. “Different Domestic Designs of Solar Stills: A Review.” Renewable and Sustainable Energy Reviews 47: 718–731. doi:10.1016/j.rser.2015.03.064.
  • Yu, W., and H. Xie. 2012. “A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications.” Journal of Nanomaterials 2012. doi:10.1155/2012/435873.
  • Zanganeh, P., A. S. Goharrizi, S. Ayatollahi, and M. Feilizadeh. 2020. “Nano-coated Condensation Surfaces Enhanced the Productivity of the Single-Slope Solar Still by Changing the Condensation Mechanism.” Journal of Cleaner Production 265: 121758. doi:10.1016/j.jclepro.2020.121758.
  • Zeiny, A., H. Jin, G. Lin, P. Song, and D. Wen. 2018. “Solar Evaporation via Nanofluids: A Comparative Study.” Renewable Energy 122: 443–454. doi:10.1016/j.renene.2018.01.043.
  • Zhang, Y., T. Rui, T. Jia, and L. Hang. 2020. “Specific ion Effect of H+ on Variably Charged Soil Colloid Aggregation.” Pedosphere 30 (6): 844–852. doi:10.1016/S1002-0160(19)60818-0.
  • Zhang, Y., M. Sivakumar, S. Yang, K. Enever, and M. Ramezanianpour. 2018. “Application of Solar Energy in Water Treatment Processes: A Review.” Desalination 428: 116–145. doi:10.1016/j.desal.2017.11.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.