109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multiobjective optimisation of feedforward control maps in dual fuel LPG/diesel engine management systems towards low consumption, low pollutants, and high torque

ORCID Icon, &
Pages 1618-1637 | Received 04 Nov 2022, Accepted 10 Feb 2023, Published online: 27 Feb 2023

References

  • Akkouche, N., K. Loubar, F. Nepveu, M. E. A. Kadi, and M. Tazerout. 2020. “Micro-Combined Heat and Power Using Dual Fuel Engine and Biogas From Discontinuous Anaerobic Digestion.” Energy Conversion and Management 205: 112407. doi:10.1016/j.enconman.2019.112407.
  • Anye Ngang, E., and C. V. Ngayihi Abbe. 2018. “Experimental and Numerical Analysis of the Performance of a Diesel Engine Retrofitted to use LPG as Secondary Fuel.” Applied Thermal Engineering 136: 462–474. doi:10.1016/j.applthermaleng.2018.03.022.
  • Ashok, B., S. Denis Ashok, and C. Ramesh Kumar. 2015. “LPG Diesel Dual Fuel Engine – A Critical Review.” Alexandria Engineering Journal 54 (2): 105–126. doi:10.1016/j.aej.2015.03.002.
  • Aydın, M., S. Uslu, and M. Bahattin Çelik. 2020. “Performance and Emission Prediction of a Compression Ignition Engine Fueled with Biodiesel-Diesel Blends: A Combined Application of ANN and RSM Based Optimization.” Fuel 269: 117472. doi:10.1016/j.fuel.2020.117472.
  • Bhatt, A. N., and N. Shrivastava. 2022. “Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review.” Archives of Computational Methods in Engineering 29 (2): 897–919. doi:10.1007/s11831-021-09596-5.
  • Bilcan, A., O. L. Corre, M. Tazerout, A. Ramesh, and S. Ganesan. 2001. Characterization of the LPG – Diesel Dual Fuel Combustion. doi:10.4271/2001-28-0036.
  • Bilcan, A. 2003. “Contribution à l'étude Du Cycle Thermodynamique de Moteurs Fonctionnant En Dual-Fuel.” http://www.Theses.Fr. Thesis, Nantes. http://www.theses.fr/2003NANT2074.
  • Cay, Y. 2013. “Prediction of a Gasoline Engine Performance with Artificial Neural Network.” Fuel 111: 324–331. doi:10.1016/j.fuel.2012.12.040.
  • Çelebi, K., E. Uludamar, E. Tosun, Ş Yıldızhan, K. Aydın, and M. Özcanlı. 2017. “Experimental and Artificial Neural Network Approach of Noise and Vibration Characteristic of an Unmodified Diesel Engine Fuelled with Conventional Diesel, and Biodiesel Blends with Natural Gas Addition.” Fuel 197: 159–173. doi:10.1016/j.fuel.2017.01.113.
  • Danaiah, P., P. Ravi Kumar, and Y. V. H. Rao. 2015. “Performance and Emission Prediction of a Tert Butyl Alcohol Gasoline Blended Spark-Ignition Engine Using Artificial Neural Networks.” International Journal of Ambient Energy 36 (1): 31–39. doi:10.1080/01430750.2013.820147.
  • Ghobadian, B., H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf. 2009. “Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel with an Artificial Neural Network.” Renewable Energy 34 (4): 976–982. doi:10.1016/j.renene.2008.08.008.
  • Gürgen, S., B. Ünver, and İ Altın. 2018. “Prediction of Cyclic Variability in a Diesel Engine Fueled with n-Butanol and Diesel Fuel Blends Using Artificial Neural Network.” Renewable Energy 117: 538–544. doi:10.1016/j.renene.2017.10.101.
  • Hafner, M., and R. Isermann. 2003. “Multiobjective Optimization of Feedforward Control Maps in Engine Management Systems Towards Low Consumption and Low Emissions.” Undefined. https://www.semanticscholar.org/paper/Dynamic-Feedforward-Control-of-a-Diesel-Engine-on-Mancini-Asprion/75275d69af6fe33695cb6330131da498d6346427.
  • Ilangkumaran, M., G. Sakthivel, and G. Nagarajan. 2016. “Artificial Neural Network Approach to Predict the Engine Performance of Fish Oil Biodiesel with Diethyl Ether Using Back Propagation Algorithm.” International Journal of Ambient Energy 37 (5): 446–455. doi:10.1080/01430750.2014.984082.
  • Kara Togun, N., and S. Baysec. 2010. “Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks.” Applied Energy 87 (1): 349–355. doi:10.1016/j.apenergy.2009.08.016.
  • Kiani, M., B. Ghobadian, T. Tavakoli, A. Nikbakht, and G. Najafi. 2010. Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol-Gasoline Blends. doi:10.1016/J.ENERGY.2009.08.034.
  • Kumaraswamy, A., and B. D. Prasad. 2012. “Performance Analysis of a Dual Fuel Engine Using LPG and Diesel with EGR System.” Procedia Engineering 38: 2784–2792. doi:10.1016/j.proeng.2012.06.326.
  • Li, R. C., and G. G. Zhu. 2018. “A Control-Oriented Reaction-Based SI Engine Combustion Model.” Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems, V002T27A002. doi:10.1115/DSCC2018-8988.
  • Maamri, R. 2014. Modélisation et expérimentation des moteurs à combustion fonctionnant avec différents carburants de substitution et mélanges [PhD, Université du Québec à Trois-Rivières]. http://depot-e.uqtr.ca/id/eprint/7598/.
  • Maamri, R., F. I. Abramtshuk, A. N. Kabanov, M. Sergeevitsh, Y. Dubé, L. Toubal, and A. Kodjo. n.d. Investigation in Adjusting the Parameters of a Diesel Engine Converted to Forced Aspiration Gas Engine. 7.
  • Najafi, G., B. Ghobadian, T. Tavakoli, D. R. Buttsworth, T. F. Yusaf, and M. Faizollahnejad. 2009. “Performance and Exhaust Emissions of a Gasoline Engine with Ethanol Blended Gasoline Fuels Using Artificial Neural Network.” Applied Energy 86 (5): 630–639. doi:10.1016/j.apenergy.2008.09.017.
  • Palani, V., P. K. A. Remigious, G. N. Shankar, J. Veerasundaram, and S. Kumarasamy. 2021. “Biodiesel and Green Diesel Generation: An Overview.” Oil & Gas Science and Technology 76: 6. doi:10.2516/ogst/2020088.
  • Pamminger, M., C. M. Hall, B. Wang, and T. Wallner. 2021. “A Control-Oriented Combustion Model Framework for Compression Ignition Engines Operating on Low-Reactivity Fuel.” International Journal of Engine Research 22 (6): 1924–1938. doi:10.1177/1468087420918038.
  • Rachid, M., F. Abramtshuk, A. Kabanov, M. Lipinsky, Y. Dubé, L. Toubal, and K. Agbossou. 2013. “Investigation in Adjusting the Parameters of a Diesel Engine Converted to Forced Aspiration Gas Engine.” American Journal of Vehicle Design 1: 9–15. doi:10.12691/ajvd-1-1-2.
  • Şahin, F. 2015. “Effects of Engine Parameters on Ionization Current and Modeling of Excess air Coefficient by Artificial Neural Network.” Applied Thermal Engineering 90: 94–101. doi:10.1016/j.applthermaleng.2015.06.100.
  • Serikov, S. A. 2010. “Neural Network Model of Internal Combustion Engine.” Cybernetics and Systems Analysis 46 (6): 998–1007. doi:10.1007/s10559-010-9281-3.
  • Sun, Y., H. Wang, C. Yang, and Y. Wang. 2017. “Development and Validation of a Marine Sequential Turbocharging Diesel Engine Combustion Model Based on Double Wiebe Function and Partial Least Squares Method.” Energy Conversion and Management 151: 481–495. doi:10.1016/j.enconman.2017.08.085.
  • Tang, J., G. G. Zhu, and Y. Men. 2021. “Review of Engine Control-Oriented Combustion Models.” International Journal of Engine Research, doi:10.1177/1468087421992955.
  • Tutak, W., A. Jamrozik, and K. Grab-Rogaliński. 2020. “Effect of Natural Gas Enrichment with Hydrogen on Combustion Process and Emission Characteristic of a Dual Fuel Diesel Engine.” International Journal of Hydrogen Energy 45 (15): 9088–9097. doi:10.1016/j.ijhydene.2020.01.080.
  • Venkatesan, B., K. Seeniappan, E. Shanmugam, S. Subramanian, and J. Veerasundaram. 2021. “Characterization and Effect of the Use of Safflower Methyl Ester and Diesel Blends in the Compression Ignition Engine.” Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 76: 29. doi:10.2516/ogst/2021011.
  • Vidal, T. Y. G. 2021. “Performance Map of a LPG-Diesel Dual-Fuel Engine Based on Experimental and Non-Linear Least Squares Determined Wiebe Function.” Scientific African 13: e00900. doi:10.1016/j.sciaf.2021.e00900.
  • Vignesh, P., V. Jayaseelan, P. Pugazhendiran, M. S. Prakash, and K. Sudhakar. 2022. “Nature-Inspired Nano-Additives for Biofuel Application – A Review.” Chemical Engineering Journal Advances 12: 100360. doi:10.1016/j.ceja.2022.100360.
  • Waste plastic oil to fuel: An experimental study in thermal barrier coated CI engine with exhaust gas recirculation. 2022. Environmental Quality Management. https://www.researcher-app.com/paper/10446635.
  • Yıldız, M., and B. Albayrak Çeper. 2017. “Zero-Dimensional Single Zone Engine Modeling of an SI Engine Fuelled with Methane and Methane-Hydrogen Blend Using Single and Double Wiebe Function: A Comparative Study.” International Journal of Hydrogen Energy 42 (40): 25756–25765. doi:10.1016/j.ijhydene.2017.07.016.
  • Yotchou, G. V. T., N. J. I. Banta, S. K. Karanja, and C. V. N. Abbe. 2022. Experimental Study on the Effect of Load and Air+Gas/Fuel Ratio on the Performances, Emissions and Combustion Characteristics of Diesel-LPG Fuelled Single Stationary CI Engine [Preprint]. In Review. doi:10.21203/rs.3.rs-1871551/v1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.