199
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Unsteady buoyant convection of nanofluid in a porous annulus: impacts of size and location of thermal source–sink pairs

, , ORCID Icon & ORCID Icon
Pages 1663-1679 | Received 01 Apr 2022, Accepted 18 Dec 2022, Published online: 02 Mar 2023

References

  • Abouali, O., and A. Falahatpisheh. 2009. “Numerical Investigation of Natural Convection of Al2O3 Nanofluid in Vertical Annuli.” Heat and Mass Transfer 46: 15–23. doi:10.1007/s00231-009-0540-7.
  • Akram, J., N. S. Akbar, and D. Tripathi. 2021. “A Theoretical Investigation on the Heat Transfer Ability of Water-Based Hybrid (Ag–Au) Nanofluids and Ag Nanofluids Flow Driven by Electroosmotic Pumping through a Microchannel.” Arabian Journal for Science and Engineering 46 (3): 2911–2927. doi:10.1007/s13369-020-05265-0.
  • Alsabery, A. I., A. J. Chamkha, H. Saleh, and I. Hashim. 2017. “Natural Convection Flow of a Nanofluid in an Inclined Square Enclosure Partially Filled with a Porous Medium.” Scientific Reports 7: 2357. doi:10.1038/s41598-017-02241-x.
  • Alsabery, A. I., M. A. Ismael, A. J. Chamkha, and I. Hashim. 2020. “Effect of Non-Homogeneous Nanofluid Model on Transient Natural Convection in a Non-Darcy Porous Cavity Containing an Inner Solid Body.” International Communications in Heat and Mass Transfer 110: 104442. doi:10.1016/j.icheatmasstransfer.2019.104442.
  • Aminossadati, S. M., and B. Ghasemi. 2009. “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure.” European Journal of Mechanics B/Fluids 28: 630–640. doi:10.1016/j.euromechflu.2009.05.006.
  • Anandika, R., V. Puneeth, S. Manjunatha, and A. J. Chamkha. 2022. “Thermal Optimisation Through Multilayer Convective Flow of CuO- MWCNT Hybrid Nanofluid in a Composite Porous Annulus.” International Journal of Ambient Energy. 43 (1): 6463–6473. doi:10.1080/01430750.2021.2023044.
  • Armaghani, T., A. J. Chamkha, A. M. Rashad, and M. A. Mansour. 2020. “Inclined Magneto: Convection, Internal Heat, and Entropy Generation of Nanofluid in an I–Shaped Cavity Saturated with Porous Media.” Journal of Thermal Analysis and Calorimetry 142: 2273–2285. doi:10.1007/s10973-020-09449-6.
  • Armaghani, T., M. S. Sadeghi, A. M. Rashad, M. A. Mansour, A. J. Chamkha, A. S. Dogonchi, and H. A. Nabwey. 2021. “MHD Mixed Convection of Localized Heat Source/Sink in an Al2O3–Cu/Water Hybrid Nanofluid in L-Shaped Cavity.” Alexandria Engineering Journal 60: 2947–2962. doi:10.1016/j.aej.2021.01.031.
  • Ayoubloo, K. A., M. Ghalambaz, T. Armaghani, A. Noghrehabadi, and A. J. Chamkha. 2020. “Pseudoplastic Natural Convection Flow and Heat Transfer in a Cylindrical Vertical Cavity Partially Filled with a Porous Layer.” International Journal of Numerical Methods for Heat & Fluid Flow 30 (3): 1096–1114. doi:10.1108/HFF-06-2019-0464.
  • Berrahil, F., A. Filali, C. Abid, S. Benissaad, R. Bessaiah, and O. Matar. 2021. “Numerical Investigation on Natural Convection of Al2O3/Water Nanofluid with Variable Properties in an Annular Enclosure Under Magnetic Field.” International Communications in Heat and Mass Transfer 126: 105408. doi:10.1016/j.icheatmasstransfer.2021.105408.
  • Choi, S. U. S., and J. A. Eastman. 1995. ““Enhancing Thermal Conductivity of Fluids with Nanoparticles.” ASME International Mechanical Engineering Congress and Exposition, San Francisco.” November, 12–17. https://www.osti.gov/servlets/purl/196525
  • Chu, Y., B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, and S. U. Khan. 2022. “Combined Impact of Cattaneo–Christov Double Diffusion and Radiative Heat Flux on Bio-Convective Flow of Maxwell Liquid Configured by a Stretched Nano-Material Surface.” Applied Mathematics and Computation 419: 126883. doi:10.1016/j.amc.2021.126883.
  • Das, M. K., and P. S. Ohal. 2009. “Natural Convection Heat Transfer Augmentation in a Partially Heated and Partially Cooled Square Cavity Utilizing Nanofluids.” International Journal of Numerical Methods for Heat & Fluid Flow 19 (3/4): 411–431. doi:10.1108/09615530910938353.
  • Davis, de Vahl, G. R.., and W. Thomas. 1969. “Natural Convection Between Concentric Vertical Cylinders.” Physics of Fluids 12: 198–207. doi:10.1063/1.1692437.
  • Emami, R. Y., M. Siavashi, and G. S. Moghaddam. 2018. “The Effect of Inclination Angle and Hot Wall Configuration on Cu–Water Nanofluid Natural Convection Inside a Porous Square Cavity.” Advanced Powder Technology 29 (3): 519–536. doi:10.1016/j.apt.2017.10.027.
  • Ghasemiasl, R., S. Hashemi, T. Armaghani, T. Tayebi, and M. S. Pour. 2022. “Recent Studies on the Forced Convection of Nano-Fluids in Channels and Tubes: A Comprehensive Review.” Experimental Techniques, 47: 47–81. doi:10.1007/s40799-022-00558-5.
  • Godson, L., C. Deepak, C. Enoch, and B. R. Jefferson. 2014. “Heat Transfer Characteristics of Silver/Water Nanofluids in a Shell and Tube Heat Exchanger.” Archives of Civil and Mechanical Engineering 14 (3): 489–496. doi:10.1016/j.acme.2013.08.002.
  • Gowda, K. G. B. M., M. S. Rajagopal, Aswatha, and K. N. Seethramu. 2019. “Numerical Studies on Natural Convection in a Trapezoidal Enclosure with Discrete Heating.” Heat Transfer Engineering 41 (6–-7): 595–606. doi:10.1080/01457632.2018.1546948.
  • Hamad, F. A. W. 1989. “Experimental Study of Natural Convection Heat Transfer in Inclined Cylindrical Annulus.” Solar and Wing Technology 6 (6): 573–579. doi:10.1016/0741-983X(89)90093-3.
  • Hymavathi, T., J. Mathews, and R. V. M. S. S. K. Kumar. 2022. “Heat Transfer and Inclined Magnetic Field Effects on Unsteady Free Convection Flow of MoS2 and MgO–Water Based Nanofluids Over a Porous Stretching Sheet.” International Journal of Ambient Energy, 43 (1): 5855–5863. doi:10.1080/01430750.2021.1995491.
  • Izadi, M., M. A. Sheremet, and S. A. M. Mehryan. 2020. “Natural Convection of a Hybrid Nanofluid Affected By an Inclined Periodic Magnetic Field within a Porous Medium.” Chinese Journal of Physics 65: 447–458. doi:10.1016/j.cjph.2020.03.006.
  • Jagadeesha, R. D., B. M. R. Prasanna, Y. Do, and M. Sankar. 2017. “Natural Convection in an Inclined Parallelogrammic Porous Enclosure under the Effects of Magnetic Field.” Journal of Physics: Conference Series 908 (1): 012076. doi:10.1088/1742-6596/908/1/012076.
  • Jagadeesha, R. D., B. M. R. Prasanna, and M. Sankar. 2015. “Double Diffusive Convection in an Inclined Parallelogrammic Porous Enclosure.” Procedia Engineering 127: 1346–1353. doi:10.1016/j.proeng.2015.11.493.
  • Kandaswamy, P., M. Eswaramurthi, and J. Lee. 2008. “Density Maximum Effect on Double-Diffusive Natural Convection in a Porous Cavity with Variable Wall Temperature.” Transport in Porous Media 73: 195–210. doi:10.1007/s11242-007-9174-8.
  • Kashyap, D., and A. K. Dass. 2018. “Two-Phase Lattice Boltzmann Simulation of Natural Convection in a Cu–Water Nanofluid-Filled Porous Cavity: Effects of Thermal Boundary Conditions on Heat Transfer and Entropy Generation.” Advanced Powder Technology 29 (11): 2707–2724. doi:10.1016/j.apt.2018.07.020.
  • Kemparaju, S., H. A. K. Swamy, M. Sankar, and F. Mebarak-Oudina. 2022. “Impact of Thermal Source–Sink Combination on Thermosolutal Convection in a Partially Active Annulus.” Physica Scripta 97 (5): 055206. doi:10.1088/1402-4896/ac6383.
  • Keyhani, M., V. Prasad, and F. A. Kulacki. 1986. “An Approximate Analysis for Thermal Convection with Application to Vertical Annulus.” Chemical Engineering Communications 42 (4 - 6): 281–289. doi:10.1080/00986448608911746.
  • Khan, M. I., and F. Alzahrani. 2020. “Entropy-Optimized Dissipative Flow of Carreau–Yasuda Fluid with Radiative Heat Flux and Chemical Reaction.” European Physical Journal Plus 135: 516. doi:10.1140/epjp/s13360-020-00532-3.
  • Khan, M. I., S. Qayyum, F. Shah, R. N. Kumar, R. J. P. Gowda, B. C. Prasannakumara, Y. Chu, and S. Kadry. 2021. “Marangoni Convective Flow of Hybrid Nanofluid (MnZnFe2O4 - NiZnFe2O4 - H2O) with Darcy Forchheimer Medium.” Ain Shams Engineering Journal 12: 3931–3938. BY. doi:10.1016/j.asej.2021.01.028.
  • Kumar, R., and M. A. Kalam. 1991. “Laminar Thermal Convection between Vertical Coaxial Isothermal Cylinders.” International Journal of Heat and Mass Transfer 34 (2): 513–524. doi:10.1016/0017-9310(91)90270-O.
  • Mahalakshmi, T., N. Nithyadevi, H. F. Oztop, and N. Abu-Hamdeh. 2018. “Natural Convective Heat Transfer of Ag–Water Nanofluid Flow Inside Enclosure with Centre Heater and Bottom Heat Source.” Chinese Journal of Physics 56 (4): 1497–1507. doi:10.1016/j.cjph.2018.06.006.
  • Malik, S., and A. K. Nayak. 2017. “MHD Convection and Entropy Generation of Nanofluid in a Porous Enclosure with Sinusoidal Heating.” International Journal of Heat and Mass Transfer 111: 329–345. doi:10.1016/j.ijheatmasstransfer.2017.03.123.
  • Mebarek-Oudina, F. 2019. “Convective Heat Transfer of Titania Nanofluids of Different Base Fluids in Cylindrical Annulus with Discrete Heat Source.” Heat Transfer-Asian Research 48: 135–147. doi:10.1002/htj.21375.
  • Menni, Y., A. J. Chamkha, and A. Azzi. 2018. “Nanofluid Transport in Porous Media: A Review.” Special Topics & Reviews in Porous Media - An International Journal 9 (4): 1–16. doi:10.1615/SpecialTopicsRevPorousMedia.2018027168.
  • Molana, M., R. Ghasemiasl, and T. Armaghani. 2022. “A Different Look at the Effect of Temperature on the Nanofluids Thermal Conductivity: Focus on the Experimental-Based Models.” Journal of Thermal Analysis and Calorimetry 147: 4553–4577. https://doi.org/10.1007/s10973-021-10836-w.
  • Nayak, M. K., S. Shaw, M. I. Khan, O. D. Makinde, Y. Chu, and S. U. Khan. 2021. “Interfacial Layer and Shape Effects of Modified Hamilton’s Crosser Model in Entropy Optimized Darcy–Forchheimer Flow.” Alexandria Engineering Journal 60: 4067–4083. doi:10.1016/j.aej.2021.02.010.
  • Nguyen, M. T., A. M. Aly, and S. Lee. 2014. “Natural Convection in a Non-Darcy Porous Cavity Filled with Cu–Water Nanofluid Using the Characteristic-Based Split Procedure in Finite-Element Method.” Numerical Heat Transfer, Part A: Applications 67 (2): 224–247. doi:10.1080/10407782.2014.923225.
  • Ogut, E. B. 2009. “Natural Convection of Water-Based Nanofluids in an Inclined Enclosure with a Heat Source.” International Journal of Thermal Science 48: 2063–2073. doi:10.1016/j.ijthermalsci.2009.03.014.
  • Oztop, H. F., and E. Abu-Nada. 2008. “Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids.” International Journal of Heat and Fluid Flow 29: 1326–1336. doi:10.1016/j.ijheatfluidflow.2008.04.009.
  • Pal, D., and G. Mandal. 2019. “Magnetohydrodynamic Nonlinear Thermal Radiative Heat Transfer of Nanofluids Over a Flat Plate in a Porous Medium in Existence of Variable Thermal Conductivity and Chemical Reaction.” International Journal of Ambient Energy 42: 1167–1177. doi:10.1080/01430750.2019.1592776.
  • Pourhoseini, S. H., N. Naghizadeh, and H. Hoseinzadeh. 2018. “Effect of Silver-Water Nanofluid on Heat Transfer Performance of a Plate Heat Exchanger: An Experimental and Theoretical Study.” Powder Technology 332: 279–286. doi:10.1016/j.powtec.2018.03.058.
  • Prasad, V., and F. A. Kulacki. 1985. “Free Convective Heat Transfer in a Liquid-Filled Vertical Annulus.” ASME Journal of Heat Transfer 107: 596–602. doi:10.1115/1.3247466.
  • Rashad, A. M., T. Armaghani, A. J. Chamkha, and M. A. Mansour. 2018. “Entropy Generation and MHD Natural Convection of a Nanofluid in an Inclined Square Porous Cavity: Effects of a Heat Sink and Source Size and Location.” Chinese Journal of Physics 56: 193–211. doi:10.1016/j.cjph.2017.11.026.
  • Reddy, N. K., and M. Sankar. 2020. “Buoyant Convective Transport of Nanofluids in a Non-Uniformly Heated Annulus.” Journal of Physics: Conference Series 1597: 012055. doi:10.1088/1742-6596/1597/1/012055.
  • Reddy, N. K., H. A. K. Swamy, and M. Sankar. 2021. “Buoyant Convective Flow of Different Hybrid Nanoliquids in a Non-Uniformly Heated Annulus.” European Physical Journal Special Topics 230 (5): 1213–1225. doi:10.1140/epjs/s11734-021-00034-y.
  • Rostami, H. T., M. F. Najafabad, Kh. Hosseinzadeh, and D. D. Ganji. 2022. “Investigation of Mixture-Based Dusty Hybrid Nanofluid Flow in Porous Media Affected by Magnetic Field using RBF Method.” International Journal of Ambient Energy 43 (1): 6425–6435. doi:10.1080/01430750.2021.2023041.
  • Sadeghi, M. S., N. Anadalibkhah, R. Ghasemiasl, T. Armaghani, A. S. Dogonchi, A. J. Chamkha, H. Ali, and A. Asadi. 2022. “On the Natural Convection of Nanofluids in Diverse Shapes of Enclosures: An Exhaustive Review.” Journal of Thermal Analysis and Calorimetry 147: 1–22. doi:10.1007/s10973-020-10222-y.
  • Salehi, S., Z. Heris, and S. H. Noiel. 2012. “Water-Silver Nanofluid Application in a TPCT Under an External Magnetic Field.” Heat Transfer-Asian Research 41 (1): 289–301. doi:10.1002/htj.21006.
  • Sammouda, M., and K. Gueraoui. 2021. “Mhd Double Diffusive Convection of Al2O3-Water Nanofluid in a Porous Medium Filled an Annular Space Inside Two Vertical Concentric Cylinders with Discrete Heat Flux.” Journal of Applied Fluid Mechanics 14 (5): 1459–1465. doi:10.47176/JAFM.14.05.32388.
  • Sankar, M., M. Bhuvaneswari, S. Sivasankaran, and Y. Do. 2011a. “Buoyancy Induced Convection in a Porous Cavity with Partially Thermally Active Side Walls.” International Journal of Heat and Mass Transfer 54 (25–26): 5173–5182. doi:10.1016/j.ijheatmasstransfer.2011.08.029.
  • Sankar, M., and Y. Do. 2010. “Numerical Simulation of Free Convection Heat Transfer in a Vertical Cavity with Discrete Heating.” International Communications in Heat and Mass Transfer 37: 600–606. doi:10.1016/j.icheatmasstransfer.2010.02.009.
  • Sankar, M., B. Jang, and Y. Do. 2014. “Numerical Study of Non-Darcy Natural Convection from Two Discrete Heat Sources in a Vertical Annulus.” Journal of Porous Media 17 (5): 373–390. doi:10.1615/JPorMedia.v17.i5.10.
  • Sankar, M., B. Kim, J. M. Lopez, and Y. Do. 2012. “Thermosolutal Convection from a Discrete Heat and Solute Source in a Vertical Porous Annulus.” International Journal of Heat and Mass Transfer 55: 4116–4128. doi:10.1016/j.ijheatmasstransfer.2012.03.053.
  • Sankar, M., J. Park, D. Kim, and Y. Do. 2013. “Numerical Study of Natural Convection in a Vertical Porous Annulus with an Internal Heat Source: Effect of Discrete Heating.” Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 63 (9): 687–712. doi:10.1080/10407782.2013.756718.
  • Sankar, M., Y. Park, J. M. Lopez, and Y. Do. 2011b. “Numerical Study of Natural Convection in a Vertical Porous Annulus with Discrete Heating.” International Journal of Heat and Mass Transfer 54: 1493–1505. doi:10.1016/j.ijheatmasstransfer.2010.11.043.
  • Sankar, M., N. K. Reddy, and Y. Do. 2021. “Conjugate Buoyant Convective Transport of Nanofluids in an Enclosed Annular Geometry.” Scientific Reports 11: 17122. doi:10.1038/s41598-021-96456-8.
  • Sankar, M., H. A. K. Swamy, Y. Do, and S. Altmeyer. 2021. “Thermal Effects of Nonuniform Heating in a Nanofluid Filled Annulus: Buoyant Transport Versus Entropy Generation.” Heat Transfer 51 (1): 1062–1091. doi:10.1002/htj.22342.
  • Sankar, M., M. Venkatachalappa, and I. S. Shivakumara. 2006. “Effect of Magnetic Field on Natural Convection in a Vertical Cylindrical Annulus.” International Journal of Engineering Science 44: 1556–1570. doi:10.1016/j.ijengsci.2006.06.004.
  • Sheikholeslami, M. 2022. “Numerical Investigation of Solar System Equipped with Innovative Turbulator and Hybrid Nanofluid.” Solar Energy Materials and Solar Cells 243: 111786. doi:10.1016/j.solmat.2022.111786.
  • Sheikholeslami, M., and Z. Ebrahimpour. 2022. “Thermal Improvement of Linear Fresnel Solar System Utilizing Al2O3-Water Nanofluid and Multi-Way Twisted Tape.” International Journal of Thermal Sciences 176: 107505. doi:10.1016/j.ijthermalsci.2022.107505.
  • Sheikholeslami, M., and S. A. Farshad. 2022. “Nanoparticles Transportation with Turbulent Regime Through a Solar Collector with Helical Tapes.” Advanced Powder Technology 33: 103510. doi:10.1016/j.apt.2022.103510.
  • Sheikholeslami, M., M. Jafaryar, M. B. Gerdroodbary, and A. H. Alavi. 2022a. “Influence of Novel Turbulator on Efficiency of Solar Collector System.” Environmental Technology & Innovation 26: 102383. doi:10.1016/j.eti.2022.102383.
  • Sheikholeslami, M., Z. Said, and M. Jafaryar. 2022b. “Hydrothermal Analysis for a Parabolic Solar Unit with Wavy Absorber Pipe and Nanofluid.” Renewable Energy 188: 922–932. doi:10.1016/j.renene.2022.02.086.
  • Sheikholeslami, M., and K. Vajravelu. 2018. “Lattice Boltzmann Method for Nanofluid Flow in a Porous Cavity with Heat Sources and Magnetic Field.” Chinese Journal of Physics 56 (4): 1578–1587. doi:10.1016/j.cjph.2018.04.014.
  • Sheikhzadeh, G. A., A. Arefmanesh, M. H. Kheirkhah, and R. Abdollahi. 2011. “Natural Convection of Cu–Water Nanofluid in a Cavity with Partially Active Side Walls.” European Journal of Mechanics – B/Fluids 30: 166–176. doi:10.1016/j.euromechflu.2010.10.003.
  • Sheikhzadeh, G. A., M. R. Babaei, and V. Rahmany. 2010. “The Effects of an Imposed Magnetic Field on Natural Convection in a Tilted Cavity with Partially Active Vertical Walls: Numerical Approach.” IJE Transactions A: Basics 23 (1): 65–78.
  • Sureshkumar, S., S. Muthukumar, D. H. Doh, and E. Prem. 2021. “Effect of Magnetic Field Inclination on Tilted Square Cavity Filled with a Nanofluid Saturated Porous Medium.” International Journal of Ambient Energy 42: 403–415. doi:10.1080/01430750.2018.1537935.
  • Swamy, H. A. K., M. Sankar, and N. K. Reddy. 2022. “Analysis of Entropy Generation and Energy Transport of Cu-Water Nanoliquid In a Tilted Vertical Porous Annulus.” International Journal of Applied and Computational Mathematics 8: 10. doi:10.1007/s40819-021-01207-y.
  • Triveni, M. K., R. Panua, and D. Sen. 2014. “Laminar Natural Convection for Thermally Active Partial Side Walls in a Right-Angled Triangular Cavity.” Arabian Journal for Science and Engineering 39: 9025–9038. doi:10.1007/s13369-014-1418-7.
  • Triveni, M. K., R. Panua, and D. Sen. 2015. “Natural Convection in a Partially Heated Triangular Cavity with Different Configurations of Cold Walls.” Arabian Journal for Science and Engineering 40: 3285–3297. doi:10.1007/s13369-015-1778-7.
  • Zhao, T., I. Khan, and Y. Chu. 2020. “Artificial Neural Networking (ANN) Analysis for Heat and Entropy Generation in Flow of Non-Newtonian Fluid Between Two Rotating Disks.” Mathematical Methods in the Applied Sciences 135: 516. doi:10.1002/mma.7310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.