48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Illustration of reacting species on the magnetohydrodynamic flow of micropolar fluid through an expanding surface with ohmic heating

, , ORCID Icon &
Pages 1703-1711 | Received 08 Oct 2022, Accepted 13 Feb 2023, Published online: 01 Mar 2023

References

  • Adesanya, S. O., O. A. Hammed, and S. Jangili. 2018. “Unsteady Squeezing Flow of a Radiative Eyring-Powell Fluid Channel Flow with Chemical Reactions.” International Journal of Thermal Sciences 125: 440–447. doi:10.1016/j.ijthermalsci.2017.12.013.
  • Agarwal, R. 2021. “Heat and Mass Transfer in Electrically Conducting Micropolar Fluid Flow Between two Stretchable Disks.” Materials Today: Proceedings 46: 10227–10238. doi:10.1016/j.matpr.2020.11.614.
  • Ali, Asgar, R. N. Jana, and S. Das. 2020. “Hall Effects on Radiated Magneto-Power-Law Fluid Flow Over a Stretching Surface with Power-law Velocity Slip Effect.” Multidiscipline Modeling in Materials and Structures 17 (1): 103–125. doi:10.1108/MMMS-01-2020-0005.
  • Ali, A., S. Sarkar, S. Das, and R. N. Jana. 2021. “Investigation of Cattaneo–Christov Double Diffusions Theory in Bioconvective Slip Flow of Radiated Magneto-Cross-Nanomaterial Over Stretching Cylinder/Plate with Activation Energy.” International Journal of Applied and Computational Mathematics 7 (5): 1–28. doi:10.1007/s40819-021-01144-w.
  • Ali, A., M. Umar, Z. Bukhari, and Z. Abbas. 2020. “Pulsating Flow of a Micropolar-Casson Fluid Through a Constricted Channel Influenced by a Magnetic Field and Darcian Porous Medium: A Numerical Study.” Results in Physics 19: 103544. doi:10.1016/j.rinp.2020.103544.
  • Aski, F. S., S. J. Nasirkhani, E. Mohammadian, and A. Asgari. 2014. “Application of Adomian Decomposition Method for Micropolar Flow in a Porous Channel.” Propulsion and Power Research 3 (1): 15–21. doi:10.1016/j.jppr.2014.01.004.
  • Barik, A. K., S. K. Mishra, S. R. Mishra, and P. K. Pattnaik. 2020. “Multiple Slip Effects on MHD Nanofluid Flow Over an Inclined, Radiative, and Chemically Reacting Stretching Sheet by Means of FDM.” Heat Transfer - Asian Research 49 (1): 477–501. doi:10.1002/htj.21622.
  • Bhat, A., and N. N. Katagi. 2020. “Micropolar Fluid Flow Between a non-Porous Disk and a Porous Disk with Slip: Keller-box Solution.” Ain Shams Engineering Journal 11 (1): 149–159. doi:10.1016/j.asej.2019.07.006.
  • Chen, C. H. 2004. “Combined Heat and Mass Transfer in MHD Free Convection from a Vertical Surface with Ohmic Heating and Viscous Dissipation.” International Journal of Engineering Science 42 (7): 699–713. doi:10.1016/j.ijengsci.2003.09.002.
  • Das, S., Akram Ali, and R. N. Jana. 2021. “Darcy–Forchheimer Flow of a Magneto-Radiated Couple Stress Fluid Over an Inclined Exponentially Stretching Surface with Ohmic Dissipation.” World Journal of Engineering 18 (2): 345–360. doi:10.1108/WJE-07-2020-0258.
  • Das, Sanatan, Akram Ali, and Rabindra Nath Jana. 2021. “Numerically Framing the Impact of Magnetic Field on Nanofluid Flow Over a Curved Stretching Surface with Convective Heating.” World Journal of Engineering 18 (6): 938–947. doi:10.1108/WJE-11-2020-0587.
  • Das, S., A. Sensharma, R. N. Jana, and O. D. Makinde. 2017. “Second-Order Slip Flow of Magneto-Nanofluids Along a Stretching Cylinder with Prescribed Heat Flux.” Journal of Nanofluids 6 (4): 720–727. doi:10.1166/jon.2017.1356.
  • Dawar, A., Z. Shah, A. Tassaddiq, S. Islam, and P. Kumam. 2021. “Joule Heating in Magnetohydrodynamic Micropolar Boundary Layer Flow Past a Stretching Sheet with Chemical Reaction and Microstructural Slip.” Case Studies in Thermal Engineering 25: 100870. doi:10.1016/j.csite.2021.100870.
  • Eldabe, N. T., and M. E. Ouaf. 2006. “Chebyshev Finite Difference Method for Heat and Mass Transfer in a Hydromagnetic Flow of a Micropolar Fluid Past a Stretching Surface with Ohmic Heating and Viscous Dissipation.” Applied Mathematics and Computation 177 (2): 561–571. doi:10.1016/j.amc.2005.07.071.
  • Eringen, A. C. 1972. “Theory of Thermomicrofluids.” Journal of Mathematical Analysis and Applications 38 (2): 480–496. doi:10.1016/0022-247X(72)90106-0.
  • Fatunmbi, E. O., and A. Adeniyan. 2020. “Nonlinear Thermal Radiation and Entropy Generation on Steady Flow of Magneto-Micropolar Fluid Passing a Stretchable Sheet with Variable Properties.” Results in Engineering 6: 100142. doi:10.1016/j.rineng.2020.100142.
  • Fatunmbi, E. O., and S. O. Salawu. 2020. “Thermodynamic Second Law Analysis of Magneto-Micropolar Fluid Flow Past Nonlinear Porous Media with Non-Uniform Heat Source.” Propulsion and Power Research 9 (3): 281–288. doi:10.1016/j.jppr.2020.03.004.
  • Goud, B. S. 2020. “Heat Generation/Absorption Influence on Steady Stretched Permeable Surface on MHD Flow of a Micropolar Fluid Through a Porous Medium in the Presence of Variable Suction/Injection.” International Journal of Thermofluids 7: 100044. doi:10.1016/j.ijft.2020.100044.
  • Goud, B. S., and M. M. Nandeppanavar. 2021. “Ohmic Heating and Chemical Reaction Effect on MHD Flow of Micropolar Fluid Past a Stretching Surface.” Partial Differential Equations in Applied Mathematics 4: 100104. doi:10.1016/j.padiff.2021.100104.
  • Jena, S., S. R. Mishra, and P. K. Pattnaik. 2020. “Development in the Heat Transfer Properties of Nanofluid due to the Interaction of Inclined Magnetic Field and non-Uniform Heat Source.” Journal of Nanofluids 9 (3): 143–151. doi:10.1166/JON.2020.1749.
  • Khader, M. M., and R. P. Sharma. 2021. “Evaluating the Unsteady MHD Micropolar Fluid Flow Past Stretching/Shirking Sheet with Heat Source and Thermal Radiation: Implementing Fourth Order Predictor–Corrector FDM.” Mathematics and Computers in Simulation 181: 333–350. doi:10.1016/j.matcom.2020.09.014.
  • Li, Y. X., M. H. Alshbool, M. R. Khan, and I. Khan. 2021. “Heat and Mass Transfer in MHD Williamson Nanofluid Flow Over an Exponentially Porous Stretching Surface.” Case Studies in Thermal Engineering 26: 100975. doi:10.1016/j.csite.2021.100975.
  • Mishra, S. R., P. K. Pattnaik, M. M. Bhatti, and T. Abbas. 2017. “Analysis of Heat and Mass Transfer with MHD and Chemical Reaction Effects on Viscoelastic Fluid Over a Stretching Sheet.” Indian Journal of Physics 91 (10): 1219–1227. doi:10.1007/s12648-017-1022-2.
  • Mishra, S. R., P. K. Pattnaik, and G. C. Dash. 2015. “Effect of Heat Source and Double Stratification on MHD Free Convection in a Micropolar Fluid.” Alexandria Engineering Journal 54 (3): 681–689. doi:10.1016/j.aej.2015.04.010.
  • Mohanty, B., S. Jena, and P. K. Pattnaik. 2019. “MHD Nanofluid Flow Over Stretching/Shrinking Surface in Presence of Heat Radiation Using Numerical Method.” International Journal on Emerging Technologies 10 (2): 119–125.
  • Nadeem, S., M. N. Khan, and N. Abbas. 2020. “Transportation of Slip Effects on Nanomaterial Micropolar Fluid Flow Over Exponentially Stretching.” Alexandria Engineering Journal 59 (5): 3443–3450. doi:10.1016/j.aej.2020.05.024.
  • Pal, D., and S. Chatterjee. 2011. “Mixed Convection Magnetohydrodynamic Heat and Mass Transfer Past a Stretching Surface in a Micropolar Fluid-Saturated Porous Medium Under the Influence of Ohmic Heating, Soret and Dufour Effects.” Communications in Nonlinear Science and Numerical Simulation 16 (3): 1329–1346. doi:10.1016/j.cnsns.2010.06.008.
  • Pal, D., and B. C. Das. 2022. “Magneto-Soret-Dufour Thermo-Radiative Double-Diffusive Convection Heat and Mass Transfer of a Micropolar Fluid in a Porous Medium with Ohmic Dissipation and Variable Thermal Conductivity.” Propulsion and Power Research 11 (1): 154–170. doi:10.1016/j.jppr.2022.02.001.
  • Pasha, P., and S. Mirzaei. 2022. “Application of Numerical Methods in Micropolar Fluid Flow and Heat Transfer in Permeable Plates.” Alexandria Engineering Journal 61 (4): 2663–2672. doi:10.1016/j.aej.2021.08.040.
  • Patel, Harshad R. 2019a. “Effects of Cross Diffusion and Heat Generation on Mixed Convective MHD Flow of Casson Fluid Through Porous Medium with non-Linear Thermal Radiation.” Heliyon 5 (4): e01555. .
  • Patel, Harshad R. 2019b. “Effects of Heat Generation, Thermal Radiation, and Hall Current on MHD Casson Fluid Flow Past an Oscillating Plate in Porous Medium.” Multiphase Science and Technology 31 (1): 87–107. doi:10.1615/MultScienTechn.2019029514.
  • Patel, Harshad R. 2021. “Thermal Radiation Effects on MHD Flow with Heat and Mass Transfer of Micropolar Fluid Between two Vertical Walls.” International Journal of Ambient Energy 42 (11): 1281–1296. doi:10.1080/01430750.2019.1594371.
  • Patel, Harshad R. 2022a. “Cross Diffusion and Heat Generation Effects on Mixed Convection Stagnation Point MHD Carreau Fluid Flow in a Porous Medium.” International Journal of Ambient Energy 43 (1): 4990–5005. doi:10.1080/01430750.2021.1931960.
  • Patel, Harshad R. 2022b. “Soret and Heat Generation Effects on Unsteady MHD Casson Fluid Flow in Porous Medium.” Waves in Random and Complex Media, 1–24. doi:10.1080/17455030.2022.2030500.
  • Patel, Harshad, Akhil Mittal, and Tejal Nagar. 2022. “Fractional Order Simulation for Unsteady MHD Nanofluid Flow in Porous Medium with Soret and Heat Generation Effects.” Heat Transfer 52 (1): 563–584. doi:10.1002/htj.22707.
  • Patel, Harshad R., and Snehal D. Patel. 2022. “Heat and Mass Transfer in Mixed Convection MHD Micropolar Fluid Flow due to non-Linear Stretched Sheet in Porous Medium with non-Uniform Heat Generation and Absorption.” Waves in Random and Complex Media, 1–31. doi:10.1080/17455030.2022.2044542.
  • Pattnaik, P. K., and T. Biswal. 2015. “Analytical Solution of MHD Free Convective Flow Through Porous Media with Time-Dependent Temperature and Concentration.” Walailak Journal of Science and Technology 12 (9): 749–762. doi:10.14456/1130.
  • Pattnaik, P. K., S. Jena, A. Dei, and G. Sahu. 2019. “Impact of Chemical Reaction on Micropolar Fluid Past a Stretching Sheet.” JP Journal of Heat and Mass Transfer 18 (1): 207–223. doi:10.17654/HM018010207.
  • Pattnaik, P. K., S. R. Mishra, A. K. Barik, and A. K. Mishra. 2020. “Influence of Chemical Reaction on Magnetohydrodynamic Flow Over an Exponential Stretching Sheet.” A Numerical Study, International Journal of Fluid Mechanics Research 47 (3): 217–228. doi:10.1615/InterJFluidMechRes.2020028543.
  • Pattnaik, P. K., S. Mishra, and M. M. Bhatti. 2020. “Duan–Rach Approach to Study Al2O3-Ethylene Glycol C2H6O2 Nanofluid Flow Based Upon KKL Model.” Inventions 5 (3): 45. doi:10.3390/inventions5030045.
  • Pattnaik, P. K., S. R. Mishra, B. Mahanthesh, B. J. Gireesha, and M. Rahimi-Gorji. 2020. “Heat Transport of Nano-Micropolar Fluid with an Exponential Heat Source on a Convectively Heated Elongated Plate Using Numerical Computation.” Multidiscipline Modeling in Materials and Structures 16 (5): 1295–1312. doi:10.1108/MMMS-12-2018-0222.
  • Pattnaik, P. K., S. R. Mishra, and R. P. Sharma. 2020. “Numerical Simulation for Flow Through Conducting Metal and Metallic Oxide Nanofluids.” Journal of Nanofluids 9 (4): 354–361. doi:10.1166/JON.2020.1753.
  • Ramesh, K., A. Riaz, and Z. A. Dar. 2021. “Simultaneous Effects of MHD and Joule Heating on the Fundamental Flows of a Casson Liquid with Slip Boundaries.” Propulsion and Power Research 10 (2): 118–129. doi:10.1016/j.jppr.2021.05.002.
  • Ratha, P. K., R. S. Tripathy, and S. R. Mishra. 2021. “Impact of Variation of Nanoparticle Shape on Free Convective MHD Water-Based Flow of Hamilton–Crosser Model Radiative Nanofluids Over a Permeable Surface.” Heat Transfer 50 (7): 6776–6794. doi:10.1002/htj.22203.
  • Reddy, C. R., S. Ontela, C. V. Rao, and T. Pradeepa. 2017. “Adomian Decomposition Method for Hall and ion-Slip Effects on Mixed Convection Flow of a Chemically Reacting Newtonian Fluid Between Parallel Plates with Heat Generation/Absorption.” Propulsion and Power Research 6 (4): 296–306. doi:10.1016/j.jppr.2017.11.001.
  • Rehman, S., S. U. Rehman, A. Khan, and Z. Khan. 2020. “The Effect of Flow Distribution on Heat and Mass Transfer of MHD Thin Liquid Film Flow Over an Unsteady Stretching Sheet in the Presence of Variational Physical Properties with Mixed Convection.” Physica A: Statistical Mechanics and its Applications 551: 124120. doi:10.1016/j.physa.2019.124120.
  • Shamshuddin, M. D., and T. Thumma. 2019. “Numerical Study of a Dissipative Micropolar Fluid Flow Past an Inclined Porous Plate with Heat Source/Sink.” Propulsion and Power Research 8 (1): 56–68. doi:10.1016/j.jppr.2019.01.001.
  • Sharma, R., R. Bhargava, and I. V. Singh. 2010. “Combined Effect of Magnetic Field and Heat Absorption on Unsteady Free Convection and Heat Transfer Flow in a Micropolar Fluid Past a Semi-Infinite Moving Plate with Viscous Dissipation Using Element Free Galerkin Method.” Applied Mathematics and Computation 217 (1): 308–321. doi:10.1016/j.amc.2010.05.062.
  • Shateyi, S., and G. T. Marewo. 2020. “On a new Numerical Approach of MHD Mixed Convection Flow with Heat and Mass Transfer of a Micropolar Fluid Over an Unsteady Stretching Sheet in the Presence of Viscous Dissipation and Thermal Radiation.” Applications of Heat, Mass and Fluid Boundary Layers, Woodhead Publishing, 149–176. doi:10.1016/B978-0-12-817949-9.00015-3.
  • Singh, K., A. K. Pandey, and M. Kumar. 2021. “Numerical Solution of Micropolar Fluid Flow via Stretchable Surface with Chemical Reaction and Melting Heat Transfer Using Keller-Box Method.” Propulsion and Power Research 10: 194–2027. doi:10.1016/j.jppr.2020.11.006.
  • Song, Y. Q., S. A. Khan, and M. Imran. 2021. “Applications of Modified Darcy law and Nonlinear Thermal Radiation in Bioconvection Flow of Micropolar Nanofluid Over an off Centered Rotating Disk.” Alexandria Engineering Journal 60 (5): 4607–4618. doi:10.1016/j.aej.2021.03.053.
  • Xia, W. F., M. I. Khan, S. U. Khan, F. Shah, and M. I. Khan. 2021. “Dynamics of Unsteady Reactive Flow of Viscous Nanomaterial Subject to Ohmic Heating, Heat Source and Viscous Dissipation.” Ain Shams Engineering Journal 12 (4): 3997–4005. doi:10.1016/j.asej.2021.02.025.
  • Yesodha, P., M. Bhubaneswari, S. Sivasankaran, and K. Saravanan. 2021. “Convective Heat and Mass Transfer of Chemically Reacting Fluids with Activation Energy Along with Soret and Dufour Effects.” Materials Today: Proceedings 42: 600–606. doi:10.1016/j.matpr.2020.10.878.
  • Zadeh, S. M. H., S. A. M. Mehryan, M. Sheremet, and M. Izadi. 2020. “Numerical Study of Mixed bio-Convection Associated with a Micropolar Fluid.” Thermal Science and Engineering Progress 18: 100539. doi:10.1016/j.tsep.2020.100539.
  • Zhang, X. H., A. Abidi, A. E. S. Ahmed, M. R. Khan, M. A. E. Shorbagy, M. Shutaywi, A. Issakhov, and A. M. Galal. 2021. “MHD Stagnation Point Flow of Nanofluid Over a Curved Stretching/Shrinking Surface Subject to the Influence of Joule Heating and Convective Condition.” Case Studies in Thermal Engineering 26: 101184. doi:10.1016/j.csite.2021.101184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.