259
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of unsteady nonlinear convective flow of a nanofluid over a vertical plate with variable fluid properties

ORCID Icon & ORCID Icon
Pages 1814-1828 | Received 26 Dec 2022, Accepted 20 Feb 2023, Published online: 22 Mar 2023

References

  • Abel, M. Subhas, and N. Mahesha. 2008. “Heat Transfer in MHD Viscoelastic Fluid Flow over a Stretching Sheet with Variable Thermal Conductivity, Non-uniform Heat Source and Radiation.” Applied Mathematical Modelling 32 (10): 1965–1983. doi:10.1016/j.apm.2007.06.038
  • Al-Kouz, Wael, B. Mahanthesh, M. S. Alqarni, and K. Thriveni. 2021. “A Study of Quadratic Thermal Radiation and Quadratic Convection on Viscoelastic Material Flow with Two Different Heat Source Modulations.” International Communications in Heat and Mass Transfer 126: 105364. doi:10.1016/j.icheatmasstransfer.2021.105364
  • Andersson, Helge I., and Jan B. Aarseth. 2007. “Sakiadis Flow with Variable Fluid Properties Revisited.” International Journal of Engineering Science 45 (2–8): 554–561. doi:10.1016/j.ijengsci.2007.04.012
  • Arunachalam, M., and N. R. Rajappa. 1978. “Thermal Boundary Layer in Liquid Metals with Variable Thermal Conductivity.” Flow, Turbulence and Combustion 34 (2–3): 179–187. doi:10.1007/BF00418866
  • Basavarajappa, Mahanthesh, and Dambaru Bhatta. 2022. “Unsteady Nonlinear Convective Flow of a Nanofluid over a Vertical Plate Due to Impulsive Motion: Optimization and Sensitivity Analysis.” International Communications in Heat and Mass Transfer 134: 106036. doi:10.1016/j.icheatmasstransfer.2022.106036
  • Bejawada, Shankar Goud, Zafar Hayat Khan, and Muhammad Hamid. 2021. “Heat Generation/Absorption on MHD Flow of a Micropolar Fluid Over a Heated Stretching Surface in the Presence of the Boundary Parameter.” Heat Transfer 50 (6): 6129–6147. doi:10.1002/htj.22165
  • Chen, C.-H. 1998. “Laminar Mixed Convection Adjacent to Vertical, Continuously Stretching Sheets.” Heat and Mass Transfer 33 (5–6): 471–476. doi:10.1007/s002310050217
  • Chen, Haisheng, Yulong Ding, Yurong He, and Chunqing Tan. 2007. “Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids.” Chemical Physics Letters 444 (4–6): 333–337. doi:10.1016/j.cplett.2007.07.046
  • Choi, U S Stephen, and Jeffrey A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 99–105. United States.
  • Farooq, M. Asif, Razia Sharif, and Asif Mushtaq. 2020. “Numerical Comparison of Constant and Variable Fluid Properties for MHD Flow over a Nonlinearly Stretching Sheet.” International Journal of Applied Mathematics 50 (2): 1–12. https://hdl.handle.net/11250/2732716.
  • Gebhart, B. 1971. Heat Transfer. 2nd ed. New York: McGraw-Hill.
  • Goren, Simon L. 1966. “On Free Convection in Water at 4°C.” Chemical Engineering Science 21 (6–7): 515–518. doi:10.1016/0009-2509(66)85065-0
  • Gupta, Sumit, Devendra Kumar, and Jagdev Singh. 2018. “MHD Mixed Convective Stagnation Point Flow and Heat Transfer of an Incompressible Nanofluid over an Inclined Stretching Sheet with Chemical Reaction and Radiation.” International Journal of Heat and Mass Transfer 118: 378–387. doi:10.1016/j.ijheatmasstransfer.2017.11.007
  • Hamad, M. A. A. 2011. “Analytical Solution of Natural Convection Flow of a Nanofluid over a Linearly Stretching Sheet in the Presence of Magnetic Field.” International Communications in Heat and Mass Transfer 38 (4): 487–492. doi:10.1016/j.icheatmasstransfer.2010.12.042
  • Irfan, M., and M. Asif Farooq. 2020. “Thermophoretic MHD Free Stream Flow with Variable Internal Heat Generation/Absorption and Variable Liquid Characteristics in a Permeable Medium over a Radiative Exponentially Stretching Sheet.” Journal of Materials Research and Technology 9 (3): 4855–4866. doi:10.1016/j.jmrt.2020.03.005
  • Ishak, A., R. Nazar, and I. Pop. 2008. “Mixed Convection Stagnation Point Flow of a Micropolar Fluid Towards a Stretching Sheet.” Meccanica 43 (4): 411–418. doi:10.1007/s11012-007-9103-5
  • Jahan, Shah, Hamzah Sakidin, Roslinda Nazar, and Ioan Pop. 2018. “Analysis of Heat Transfer in Nanofluid Past a Convectively Heated Permeable Stretching/Shrinking Sheet with Regression and Stability Analyses.” Results in Physics 10: 395–405. doi:10.1016/j.rinp.2018.06.021
  • Khan, M., M. Irfan, W. A. Khan, and A. S. Alshomrani. 2017. “A New Modeling for 3D Carreau Fluid Flow Considering Nonlinear Thermal Radiation.” Results in Physics 7: 2692–2704. doi:10.1016/j.rinp.2017.07.024
  • Khan, W. A., and I. Pop. 2010. “Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet.” International Journal of Heat and Mass Transfer 53 (11–12): 2477–2483. doi:10.1016/j.ijheatmasstransfer.2010.01.032
  • Khan, Sami Ullah, Sabir Ali Shehzad, Amar Rauf, and Nasir Ali. 2018. “Mixed Convection Flow of Couple Stress Nanofluid over Oscillatory Stretching Sheet with Heat Absorption/Generation Effects.” Results in Physics 8: 1223–1231. doi:10.1016/j.rinp.2018.01.054
  • Kumar, P. Pramod, B. Shankar Goud, and Bala Siddulu Malga. 2020. “Finite Element Study of Soret Number Effects on MHD Flow of Jeffrey Fluid Through a Vertical Permeable Moving Plate.” Partial Differential Equations in Applied Mathematics 1: 100005. doi:10.1016/j.padiff.2020.100005
  • Kumbhakar, Bidyasagar, and Susmay Nandi. 2022. “Unsteady MHD Radiative-dissipative Flow of Cu-Al2O3/H2O Hybrid Nanofluid Past a Stretching Sheet with Slip and Convective Conditions: A Regression Analysis.” Mathematics and Computers in Simulation 194: 563–587. doi:10.1016/j.matcom.2021.12.018
  • Lai, F. C., and F. A. Kulacki. 1990. “The Effect of Variable Viscosity on Convective Heat Transfer Along a Vertical Surface in a Saturated Porous Medium.” International Journal of Heat and Mass Transfer 33 (5): 1028–1031. doi:10.1016/0017-9310(90)90084-8
  • Mahanthesh, B., ed. 2021. Mathematical Fluid Mechanics. De Gruyter. doi:10.1515/9783110696080.
  • Mahanthesh, B., B. J. Gireesha, M. Archana, T. Hayat, and A. Alsaedi. 2018. “Variable Viscosity Effects on Third-grade Liquid Flow in Post-treatment Analysis of Wire Coating in the Presence of Nanoparticles.” International Journal of Numerical Methods for Heat & Fluid Flow 28 (10): 2423–2441. doi:10.1108/HFF-12-2017-0490
  • Mahanthesh, B., B. J. Gireesha, and Rama Subba Reddy Gorla. 2016. “Nonlinear Radiative Heat Transfer in MHD Three-dimensional Flow of Water Based Nanofluid over a Non-linearly Stretching Sheet with Convective Boundary Condition.” Journal of the Nigerian Mathematical Society 35 (1): 178–198. doi:10.1016/j.jnnms.2016.02.003
  • Mahanthesh, B., N. Srikantha, and J. Mackolil. 2022. “A Study on Heat Transfer in Three-Dimensional Nonlinear Convective Boundary Layer Flow of Nanomaterial Considering the Aggregation of Nanoparticles.” Heat Transfer 51 (1). doi:10.1002/htj.22334
  • Maïga, Sidi El Bécaye, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis. 2005. “Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows.” International Journal of Heat and Fluid Flow 26 (4): 530–546. doi:10.1016/j.ijheatfluidflow.2005.02.004
  • Megahed, Ahmed M., M. Gnaneswara Reddy, and W. Abbas. 2021. “Modeling of MHD Fluid Flow over an Unsteady Stretching Sheet with Thermal Radiation, Variable Fluid Properties and Heat Flux.” Mathematics and Computers in Simulation 185: 583–593. doi:10.1016/j.matcom.2021.01.011
  • Pal, Dulal, and Gopinath Mandal. 2022. “Effects of Aligned Magnetic Field on Heat Transfer of Water-Based Carbon Nanotubes Nanofluid over a Stretching Sheet with Homogeneous–Heterogeneous Reactions.” International Journal of Ambient Energy 43 (1): 5434–5446. doi:10.1080/01430750.2021.1955004
  • Patil, P. M., S. Roy, and Ali J. Chamkha. 2010. “Mixed Convection Flow Over a Vertical Power-law Stretching Sheet.” International Journal of Numerical Methods for Heat & Fluid Flow 20 (4): 445–458. doi:10.1108/09615531011035839
  • Prasad, K. V., Dulal Pal, and P. S. Datti. 2009. “MHD Power-law Fluid Flow and Heat Transfer over a Non-Isothermal Stretching Sheet.” Communications in Nonlinear Science and Numerical Simulation 14 (5): 2178–2189. doi:10.1016/j.cnsns.2008.06.021
  • Priyadarsan, K. P., and S. Panda. 2020. “Effect of Variable Fluid Properties on MHD Mixed Convection Flow of Second-grade Fluid over a Linear Heated Stretching Sheet with a Convective Boundary Condition.” Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 90: 225–237. doi:10.1007/s40010-018-0559-6
  • Rahman, Mohammad M., M. A. Rahman, M. A. Samad, and M. S. Alam. 2009. “Heat Transfer in a Micropolar Fluid Along a Non-linear Stretching Sheet with a Temperature-Dependent Viscosity and Variable Surface Temperature.” International Journal of Thermophysics 30 (5): 1649–1670. doi:10.1007/s10765-009-0656-5
  • Rana, S., Rashid Mehmood, and Noreen Sher Akbar. 2016. “Mixed Convective Oblique Flow of a Casson Fluid with Partial Slip, Internal Heating and Homogeneous–Heterogeneous Reactions.” Journal of Molecular Liquids 222: 1010–1019. doi:10.1016/j.molliq.2016.07.137
  • Rana, Puneet, N. Srikantha, Taseer Muhammad, and Gaurav Gupta. 2021. “Computational Study of Three-Dimensional Flow and Heat Transfer of 25 nm Cu–H2O Nanoliquid with Convective Thermal Condition and Radiative Heat Flux Using Modified Buongiorno Model.” Case Studies in Thermal Engineering 27: 101340. doi:10.1016/j.csite.2021.101340
  • Shah, Rehan Ali, Tariq Abbas, Muhammad Idrees, and Murad Ullah. 2017. “MHD Carreau Fluid Slip Flow over a Porous Stretching Sheet with Viscous Dissipation and Variable Thermal Conductivity.” Boundary Value Problems 2017 (1): 94. doi:10.1186/s13661-017-0827-4
  • Shankar Goud, B. 2020. “Heat Generation/Absorption Influence on Steady Stretched Permeable Surface on MHD Flow of a Micropolar Fluid Through a Porous Medium in the Presence of Variable Suction/Injection.” International Journal of Thermofluids 7-8: 100044. doi:10.1016/j.ijft.2020.100044
  • Sharifi, Shima, Rahbar Rahimi, Davod Mohebbi-Kalhori, and C. Ozgur Colpan. 2020. “Coupled Computational Fluid Dynamics-Response Surface Methodology to Optimize Direct Methanol Fuel Cell Performance for Greener Energy Generation.” Energy 198: 117293. doi:10.1016/j.energy.2020.117293
  • Sharma, Ram Prakash, S. M. Ibrahim, S. R. Mishra, and Seema Tinker. 2021. “Impact of Dissipative Heat and Radiative Heat on MHD Viscous Flow Through a Slandering Stretching Sheet with Temperature-Dependent Variable Viscosity.” Heat Transfer 50 (8): 7568–7587. doi:10.1002/htj.22243
  • Sharma, K., N. Vijay, F. Mabood, and I. A. Badruddin. 2022. “Numerical Simulation of Heat and Mass Transfer in Magnetic Nanofluid Flow by a Rotating Disk with Variable Fluid Properties.” International Communications in Heat and Mass Transfer 133: 105977. doi:10.1016/j.icheatmasstransfer.2022.105977
  • Srinivasulu, Thadakamalla, and B. Shankar Goud. 2021. “Effect of Inclined Magnetic Field on Flow, Heat and Mass Transfer of Williamson Nanofluid over a Stretching Sheet.” Case Studies in Thermal Engineering 23: 100819. doi:10.1016/j.csite.2020.100819
  • Thriveni, K., and B. Mahanthesh. 2021. “Significance of Variable Fluid Properties on Hybrid Nanoliquid Flow in a Micro-annulus with Quadratic Convection and Quadratic Thermal Radiation: Response Surface Methodology.” International Communications in Heat and Mass Transfer 124: 105264. doi:10.1016/j.icheatmasstransfer.2021.105264
  • Vajravelu, K., and K. S. Sastri. 1977. “Fully Developed Laminar Free Convection Flow Between Two Parallel Vertical Walls—I.” International Journal of Heat and Mass Transfer 20 (6): 655–660. doi:10.1016/0017-9310(77)90052-7
  • Williams, J. C., III, and T. B. Rhyne. 1980. “Boundary Layer Development on a Wedge Impulsively Set into Motion.” SIAM Journal on Applied Mathematics 38 (2): 215–224. doi:10.1137/0138019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.