118
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Review on performance analysis in diffusion absorption refrigeration system (DARS) using different working fluids

&
Pages 2185-2199 | Received 25 Mar 2022, Accepted 07 Jun 2023, Published online: 21 Jun 2023

References

  • Acuña, A., N. Velázquez, and J. Cerezo. 2013. “Energy Analysis of a Diffusion Absorption Cooling System Using Lithium Nitrate, Sodium Thiocyanate and Water as Absorbent Substances and Ammonia as the Refrigerant.” Applied Thermal Engineering 51 (1–2): 1273–1281. https://doi.org/10.1016/j.applthermaleng.2012.10.046
  • Adham, A. M., and M. A. Sulaiman. 2017. “Design of a Domestic Diffusion Absorption Refrigeration System Using Evolutionary Algorithm.” Int Rev Mech Eng (IREME) 11 (11): 803. https://doi.org/10.15866/ireme.v11i11.13177
  • Adjibade, M. I. S., A. Thiam, C. Awanto, and D. Azilinon. 2017a. “Experimental Analysis of Diffusion Absorption Refrigerator Driven by Electrical Heater and Engine Exhaust gas.” Case Studies in Thermal Engineering 10: 255–261. https://doi.org/10.1016/j.csite.2017.07.004.
  • Adjibade, M. I. S., A. Thiam, C. Awanto, B. A. Ndiogou, and V. Sambou. 2017b. “Dynamic Investigation of the Diffusion Absorption Refrigeration System NH 3 -H 2 O-H 2.” Case Studies in Thermal Engineering 10: 468–474. https://doi.org/10.1016/j.csite.2017.10.006.
  • Al-Mousawi, F. N., R. Al-Dadah, and S. Mahmoud. 2017. “Novel System for Cooling and Electricity: Four Different Integrated Adsorption-ORC Configurations with two Expanders.” Energy Conversion and Management 152: 72–87. https://doi.org/10.1016/j.enconman.2017.09.044
  • Al-Waeli, A. H., M. T. Chaichan, K. Sopian, and H. A. Kazem. 2019. “Influence of the Base Fluid on the Thermo-Physical Properties of PV/T Nano-Fluids with Surfactant.” Case Studies in Thermal Engineering 13: 100340. https://doi.org/10.1016/j.csite.2018.10.001
  • Alelyani, S. M., N. W. Fette, E. B. Stechel, P. Doron, and P. E. Phelan. 2017. “Techno-economic Analysis of Combined Ammonia-Water Absorption Refrigeration and Desalination.” Energy Conversion and Management 143: 493–504. https://doi.org/10.1016/j.enconman.2017.03.085
  • Aly, W. I. A., M. Abdo, G. Bedair, and A. E. Hassaneen. 2017. “Thermal Performance of a Diffusion Absorption Refrigeration System Driven by Waste Heat from Diesel Engine Exhaust Gases.” Applied Thermal Engineering 114: 621–630. https://doi.org/10.1016/j.applthermaleng.2016.12.019.
  • Becker, T. M., M. Wang, A. Kabra, S. H. Jamali, M. Ramdin, D. Dubbeldam, Infante C. A. Ferreira, and T. J. Vlugt. 2018. “Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation.” Industrial & Engineering Chemistry Research 57 (15): 5442–5452. https://doi.org/10.1021/acs.iecr.8b00442
  • Belman-Flores, J. M., and S. Ledesma. 2015. “Statistical analysis of the energy performance of a refrigeration system working with R1234yf using artificial neural networks.” Applied Thermal Engineering 82: 8–17. https://doi.org/10.1016/j.applthermaleng.2015.02.061.
  • Bonab, H. B., and N. Javani. 2019. “Investigation and Optimization of Solar Volumetric Absorption Systems Using Nano-Particles.” Solar Energy Materials and Solar Cells 194: 229–234. https://doi.org/10.1016/j.solmat.2019.02.019
  • Bourseau, P., and R. Bugarel. 1986. “Réfrigération par Cycle à Absorption-Diffusion: Comparison des performances des systèmes NH3 H2O et NH3 NaSCN.” International Journal of Refrigeration 9 (4): 206–214. https://doi.org/10.1016/0140-7007(86)90092-7
  • Chen, J., K. J. Kim, and K. E. Herold. 1996. “Performance Enhancement of a Diffusion–Absorption Refrigerator.” International Journal of Refrigeration 19 (3): 208–218. https://doi.org/10.1016/0140-7007(96)87215-X
  • Chen, W., C. Xu, H. Wu, Y. Bai, Z. Li, and B. Zhang. 2020. “Energy and Exergy Analyses of a Novel Hybrid System Consisting of a Phosphoric Acid Fuel Cell and a Triple-Effect Compression–Absorption Refrigerator with [mmim] DMP/CH3OH as Working Fluid.” Energy 195: 116951. https://doi.org/10.1016/j.energy.2020.116951
  • Darvanjooghi, M. H. K., M. N. Esfahany, and S. H. Esmaeili-Faraj. 2018. “Investigation of the Effects of Nano-Particle Size on CO 2 Absorption by Silica-Water Nano-Fluid.” Separation and Purification Technology 195: 208–215. https://doi.org/10.1016/j.seppur.2017.12.020.
  • De Lucas, A., M. Donate, and J. F. Rodríguez. 2008. “Applying Surfactants to Improve the Absorption Capacity of Mixtures of Lithium Bromide and Formats in Absorption Refrigeration Coolers.” International Journal of Refrigeration 31 (6): 1073–1080. https://doi.org/10.1016/j.ijrefrig.2007.12.005
  • Elhambakhsh, A., M. R. Zaeri, M. Mehdipour, and P. Keshavarz. 2020. “Synthesis of Different Modified Magnetic Nano-Particles for Selective Physical/Chemical Absorption of CO2 in a Bubble Column Reactor.” Journal of Environmental Chemical Engineering, 104195. https://doi.org/10.1016/j.jece.2020.104195.
  • Ezzine, N. B., R. Garma, and A. Bellagi. 2010. “A Numerical Investigation of a Diffusion-Absorption Refrigeration Cycle Based on R124-DMAC Mixture for Solar Cooling.” Energy 35 (5): 1874–1883. https://doi.org/10.1016/j.energy.2009.12.032
  • Farzadi, R., and M. Bazargan. 2020. “Experimental Study of a Diffusion Absorption Refrigeration Cycle Supplied by the Exhaust Waste Heat of a Sedan Car at Low Engine Speeds.” Heat and Mass Transfer 56 (4): 1353–1363. https://doi.org/10.1007/s00231-019-02793-w
  • Gao, Y., G. He, P. Chen, X. Zhao, and D. Cai. 2019. “Energy and Exergy Analysis of an air-Cooled Waste Heat-Driven Absorption Refrigeration Cycle Using R290/oil as Working Fluid.” Energy. https://doi.org/10.1016/j.energy.2019.02.117.
  • Ghorbani, B., M. Mafi, R. Shirmohammadi, M. H. Hamedi, and M. Amidpour. 2014. “Optimization of Operation Parameters of Refrigeration Cycle Using Particle Swarm and NLP Techniques.” Journal of Natural Gas Science and Engineering, https://doi.org/10.1016/j.jngse.2014.10.007.
  • Gürbüz, E. Y., A. Keçebaş, and A. Sözen. 2022. “Exergy and Thermoeconomic Analyses of the Diffusion Absorption Refrigeration System with Various Nano-Particles and Their Different Ratios as Work Fluid.” Energy 248: 123579. https://doi.org/10.1016/j.energy.2022.123579
  • Gürbüz, E. Y., A. Sözen, A. Keçebaş, and E. Özbaş. 2022. “Experimental and Numerical Investigation of Diffusion Absorption Refrigeration System Working with ZnOAl2O3 and TiO2 Nano-Particles Added Ammonia/Water Nano-Fluid.” Experimental Heat Transfer 35 (3): 1–26. https://doi.org/10.1080/08916152.2020.1838668.
  • Jeon, Y., S. Kim, D. Kim, H. J. Chung, and Y. Kim. 2017. “Performance Characteristics of an R600a Household Refrigeration Cycle with a Modified two-Phase Ejector for Various Ejector Geometries and Operating Conditions.” Applied Energy 205: 1059–1067. https://doi.org/10.1016/j.apenergy.2017.08.148
  • Jiang, W., S. Li, L. Yang, and K. Du. 2018. “Experimental Investigation on Enhancement of Ammonia Absorption Process with TiO2 Nano-Particles in Newly Designed Absorber.” International Journal of Refrigeration, https://doi.org/10.1016/j.ijrefrig.2018.11.019.
  • Kang, Y. T., H. J. Kim, and K. I. Lee. 2008. “Heat and Mass Transfer Enhancement of Binary Nano-Fluids for H2O/LiBr Falling Film Absorption Process.” International Journal of Refrigeration 31 (5): 850–856. https://doi.org/10.1016/j.ijrefrig.2007.10.008
  • Kim, J. K., A. Akisawa, T. Kashiwagi, and Y. T. Kang. 2007. “Numerical Design of Ammonia Bubble Absorber Applying Binary Nano-Fluids and Surfactants.” International Journal of Refrigeration 30 (6): 1086–1096. https://doi.org/10.1016/j.ijrefrig.2006.12.011
  • Kim, J., J. Y. Jung, J. H. Kim, M. Kim, T. Kashiwagi, and Y. T. Kang. 2006. “The Effect of Chemical Surfactants on the Absorption Performance During NH3/H2O Bubble Absorption Process.” International Journal of Refrigeration 29 (2): 170–177. https://doi.org/10.1016/j.ijrefrig.2005.06.006
  • Kong, D., X. Yin, X. Ding, N. Fang, and P. Duan. 2021. “Global Optimization of a Vapor Compression Refrigeration System with a Self-Adaptive Differential Evolution Algorithm.” Applied Thermal Engineering 197: 117427. https://doi.org/10.1016/j.applthermaleng.2021.117427
  • Lee, G., H. W. Choi, and Y. T. Kang. 2020. “Cycle Performance Analysis and Experimental Validation of a Novel Diffusion Absorption Refrigeration System Using R600a/n-Octane.” Energy 119328. https://doi.org/10.1016/j.energy.2020.119328.
  • Li, K., D. Cai, Y. Liu, J. Jiang, W. Sun, and G. He. 2017. “Thermodynamic Analyses of a Novel Exhaust Heat-Driven non-Adiabatic Ejection-Absorption Refrigeration Cycle Using R290/oil Mixture.” Energy Conversion and Management 149: 244–253. https://doi.org/10.1016/j.enconman.2017.07.021.
  • Li, Y., K. Du, H. Hu, L. Yang, and S. Li. 2015. “Experimental Investigation on Enhancement of Ammonia–Water Falling Film Generation by Adding Carbon Black Nano-Particles.” Experimental Thermal and Fluid Science 68: 593–600. https://doi.org/10.1016/j.expthermflusci.2015.06.019
  • Liu, X., P. Pan, and M. He. 2018. “Vapor-liquid Equilibrium and Diffusion Coefficients of R32+[HMIM][FEP], R152a+[HMIM][FEP] and R161+[HMIM][FEP].” Journal of Molecular Liquids 253: 28–35. https://doi.org/10.1016/j.molliq.2018.01.032
  • Long, Z., Y. Luo, H. Li, X. Bu, and W. Ma. 2013. “Performance Analysis of a Diffusion Absorption Refrigeration Cycle Working with TFE–TEGDME Mixture.” Energy and Buildings 58: 86–92. https://doi.org/10.1016/j.enbuild.2012.12.003
  • Ma, X., F. Su, J. Chen, T. Bai, and Z. Han. 2009. “Enhancement of Bubble Absorption Process Using a CNTs-Ammonia Binary Nano-Fluid.” International Communications in Heat and Mass Transfer 36 (7): 657–660. https://doi.org/10.1016/j.icheatmasstransfer.2009.02.016
  • Mansouri, R., M. Bourouis, and A. Bellagi. 2017. “Experimental Investigations and Modelling of a Small Capacity Diffusion-Absorption Refrigerator in Dynamic Mode.” Applied Thermal Engineering 113: 653–662. https://doi.org/10.1016/j.applthermaleng.2016.11.078
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. “Introducing an Integrated SOFC, Linear Fresnel Solar Field, Stirling Engine and Steam Turbine Combined Cooling, Heating and Power Process.” International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2019.09.074.
  • Mazouz, S., R. Mansouri, and A. Bellagi. 2014. “Experimental and Thermodynamic Investigation of an Ammonia/Water Diffusion Absorption Machine.” International Journal of Refrigeration 45: 83–91. https://doi.org/10.1016/j.ijrefrig.2014.06.002.
  • Mehyo, M., E. Özbaş, and H. Özcan. 2022. “Performance Investigation of Utilizing Nanoferrofluid as a Working Solution in a Diffusion Absorption Refrigeration System Under an External Magnetic Field Effect.” Heat and Mass Transfer 58 (12): 1–22. https://doi.org/10.1007/s00231-022-03214-1.
  • Minea, A. A., and W. M. El-Maghlany. 2017. “Natural Convection Heat Transfer Utilizing Ionic Nano-Fluids with Temperature-Dependent Thermophysical Properties.” Chemical Engineering Science 174: 13–24. https://doi.org/10.1016/j.ces.2017.08.028
  • Modi, B., A. Mudgal, and B. Patel. 2017. “Energy and Exergy Investigation of Small Capacity Single-Effect Lithium Bromide Absorption Refrigeration System.” Energy Procedia 109: 203–210. https://doi.org/10.1016/j.egypro.2017.03.040
  • Mohtaram, S., M. Omidi, J. Lin, H. Sun, and W. Chen. 2019. “Exergy Analysis of a Multi Mixture Working Fluid Absorption Refrigeration Cycle.” Case Studies in Thermal Engineering 15: 100540. https://doi.org/10.1016/j.csite.2019.100540
  • Najjaran, A., J. Freeman, A. Ramos, and C. N. Markides. 2019. “Experimental Investigation of an Ammonia-Water-Hydrogen Diffusion Absorption Refrigerator.” Applied Energy 256: 113899. https://doi.org/10.1016/j.apenergy.2019.113899
  • Narváez-Romo, B., M. Chhay, E. W. Zavaleta-Aguilar, and J. R. Simões-Moreira. 2017. “A Critical Review of Heat and Mass Transfer Correlations for LiBr-H2O and NH3-H2O Absorption Refrigeration Machines Using Falling Liquid Film Technology.” Applied Thermal Engineering 123: 1079–1095. https://doi.org/10.1016/j.applthermaleng.2017.05.092
  • Öztas, S., M. Gürü, A. Sözen, C. Kilinc, and Z. Gülseven. 2019. “Upgrading of Performance of Diffusion Absorption Refrigeration System.” Journal of Environmental Science and Engineering Technology 7: 35–44. https://doi.org/10.12974/2311-8741.2019.07.05
  • Pachbhai, J. S., L. P. Adarkar, A. S. Vaidya, and R. O. Namdeo. 2017. “Review of Vapour Absorption System and Vapour Compression System.” International Research Journal of Engineering and Technology 4 (1): 251–255.
  • Pang, C., W. Wu, W. Sheng, H. Zhang, and Y. T. Kang. 2012. “Mass Transfer Enhancement by Binary Nano-Fluids (NH3/H2O+ Ag Nano-Particles) for Bubble Absorption Process.” International Journal of Refrigeration 35 (8): 2240–2247. https://doi.org/10.1016/j.ijrefrig.2012.08.006
  • Paul, T. C., A. M. Morshed, and J. A. Khan. 2013. “Nano-particle Enhanced Ionic Liquids (NEILS) as Working Fluid for the Next Generation Solar Collector.” Procedia Engineering 56: 631–636. https://doi.org/10.1016/j.proeng.2013.03.170
  • Perez-Garcia, V., J. L. Rodriguez-Munoz, J. M. Belman-Flores, C. Rubio-Maya, and J. J. Ramírez-Minguela. 2019. “Theoretical Modeling and Experimental Validation of a Small Capacity Diffusion-Absorption Refrigerator.” International Journal of Refrigeration 104: 302–310. https://doi.org/10.1016/j.ijrefrig.2019.05.014
  • Pfaff, M., R. Saravanan, M. P. Maiya, and S. S. Murthy. 1998. “Studies on Bubble Pump for a Water–Lithium Bromide Vapour Absorption Refrigerator.” International Journal of Refrigeration 21 (6): 452–462. https://doi.org/10.1016/S0140-7007(98)00006-1.
  • Rivera, W., A. Huicochea, R. J. Romero, and A. Lozano. 2018. “Experimental Assessment of Double-Absorption Heat Transformer Operating with H2O/LiBr.” Applied Thermal Engineering 132: 432–440. https://doi.org/10.1016/j.applthermaleng.2017.12.117
  • Rodríguez-Muñoz, J. L., and J. M. Belman-Flores. 2014. “Review of Diffusion–Absorption Refrigeration Technologies.” Renewable and Sustainable Energy Reviews 30: 145–153. https://doi.org/10.1016/j.rser.2013.09.019
  • Saravanan, V., D. Hithaish, C. K. Umesh, and K. N. Seetharamu. 2021. “Numerical Investigation of Thermo-Hydrodynamic Performance of Triangular Pin Fin Heat Sink Using Nano-Fluids.” Thermal Science and Engineering Progress 21: 100768. https://doi.org/10.1016/j.tsep.2020.100768
  • Shelton, S. V., S. W. Stewart, and D. Erickson. 2002. “Bubble Pump Design for Single Pressure Absorption Refrigeration Cycles.” Ashrae Transactions 108 (1): 867–876.
  • Shiflett, M. B., and A. Yokozeki. 2006. “Solubility and Diffusivity of Hydrofluorocarbons in Room-Temperature Ionic Liquids.” AIChE Journal 52 (3): 1205–1219. https://doi.org/10.1002/aic.10685
  • Sleiti, A. K., W. A. Al-Ammari, and M. Al-Khawaja. 2020. “Review of Innovative Approaches of Thermo-Mechanical Refrigeration Systems Using low Grade Heat.” International Journal of Energy Research 44 (13): 9808–9838. https://doi.org/10.1002/er.5556
  • Sleiti, A. K., W. A. Al-Ammari, and M. Al-Khawaja. 2021. “Analysis of Novel Regenerative Thermo-Mechanical Refrigeration System Integrated with Isobaric Engine.” Journal of Energy Resources Technology 143 (5). https://doi.org/10.1115/1.4049368
  • Sleiti, A. K., M. Al-Khawaja, and W. A. Al-Ammari. 2020. “A Combined Thermo-Mechanical Refrigeration System with Isobaric Expander-Compressor Unit Powered by low Grade Heat–Design and Analysis.” International Journal of Refrigeration 120: 39–49. https://doi.org/10.1016/j.ijrefrig.2020.08.017
  • Song, C., X. Liu, Z. Ye, and M. He. 2020. “A New Power/Cooling Co-generation System Using R1234ze (E)/ionic Liquid Working Fluid.” International Journal of Energy Research 44 (6): 4703–4716. https://doi.org/10.1002/er.5252
  • Sözen, A., A. Keçebaş, and E. Y. Gürbüz. 2021. “Enhancing the Thermal Performance of Diffusion Absorption Refrigeration System by Using Magnesium Aluminate Spinel Oxide Compound Nano-Particles: An Experimental Investigation.” Heat and Mass Transfer 57 (10): 1583–1592. https://doi.org/10.1007/s00231-021-03046-5
  • Sözen, A., T. Menlik, and E. Özbaş. 2012. “The Effect of Ejector on the Performance of Diffusion Absorption Refrigeration Systems: An Experimental Study.” Applied Thermal Engineering 33: 44–53. https://doi.org/10.1016/j.applthermaleng.2011.09.009
  • Sözen, A., E. Özbaş, T. Menlik, Ü İskender, C. Kılınç, and M. T. Çakır. 2015. “Performance Investigation of a Diffusion Absorption Refrigeration System Using Nano-Size Alumina Particles in the Refrigerant.” International Journal of Exergy 18 (4): 443–461. https://doi.org/10.1504/IJEX.2015.072910
  • Srikhirin, P., and S. Aphornratana. 2002. “Investigation of a Diffusion Absorption Refrigerator.” Applied Thermal Engineering 22 (11): 1181–1193. https://doi.org/10.1016/S1359-4311(02)00049-2
  • Swarnkar, S. K., S. S. Murthy, R. L. Gardas, and G. Venkatarathnam. 2014. “Performance of a Vapour Absorption Refrigeration System Operating with Ionic Liquid-Ammonia Combination with Water as Co-solvent.” Applied Thermal Engineering 72 (2): 250–257. https://doi.org/10.1016/j.applthermaleng.2014.06.020
  • Takalkar, G., and A. K. Sleiti. 2021. “Comprehensive Performance Analysis and Optimization of 1, 3-Dimethylimidazolylium Dimethylphosphate-Water Binary Mixture for a Single Effect Absorption Refrigeration System.” Frontiers in Energy, 1–15. https://doi.org/10.1007/s11708-021-0720-9.
  • Talpada, J. S., and P. V. Ramana. 2019. “A Review on Performance Improvement of an Absorption Refrigeration System by Modification of Basic Cycle.” International Journal of Ambient Energy 40 (6): 661–673. https://doi.org/10.1080/01430750.2017.1423379
  • Talpada, J. S., and P. V. Ramana. 2020. “Experimental Analysis of H2O–LiBr Absorption Refrigeration System Using Al2O3 Nano-Particles.” International Journal of Air-Conditioning and Refrigeration 28 (02): 2050010. https://doi.org/10.1142/S2010132520500108
  • Tugcu, A., and O. Arslan. 2017. “Optimization of Geothermal Energy Aided Absorption Refrigeration System—GAARS: A Novel ANN-Based Approach.” Geothermics 65: 210–221. https://doi.org/10.1016/j.geothermics.2016.10.004
  • Wang, H. 2012. “A New Style Solar-Driven Diffusion Absorption Refrigerator and its Operating Characteristics.” Energy Procedia 18: 681–692. https://doi.org/10.1016/j.egypro.2012.05.083.
  • Wang, M., T. M. Becker, B. A. Schouten, T. J. H. Vlugt, and C. A. I. Ferreira. 2018. “Ammonia/Ionic Liquid Based Double-Effect Vapor Absorption Refrigeration Cycles Driven by Waste Heat for Cooling in Fishing Vessels.” Energy Conversion and Management 174: 824–843. https://doi.org/10.1016/j.enconman.2018.08.060.
  • Wang, M., and C. A. I. Ferreira. 2017. “Absorption Heat Pump Cycles with NH3–Ionic Liquid Working Pairs.” Applied Energy 204: 819–830. https://doi.org/10.1016/j.apenergy.2017.07.074
  • Wang, G., Q. Zhang, M. Zeng, R. Xu, G. Xie, and W. Chu. 2018. “Investigation on Mass Transfer Characteristics of the Falling Film Absorption of LiBr Aqueous Solution Added with Nano-Particles.” International Journal of Refrigeration 89: 149–158. https://doi.org/10.1016/j.ijrefrig.2018.01.017.
  • Wen, T., L. Lu, C. Dong, and Y. Luo. 2018. “Investigation on the Regeneration Performance of Liquid Desiccant by Adding Surfactant PVP-K30.” International Journal of Heat and Mass Transfer 123: 445–454. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.005.
  • Wu, W., M. Leung, Z. Ding, H. Huang, Y. Bai, and L. Deng. 2020. “Comparative Analysis of Conventional and low-GWP Refrigerants with Ionic Liquid Used for Compression-Assisted Absorption Cooling Cycles.” Applied Thermal Engineering 172: 115145. https://doi.org/10.1016/j.applthermaleng.2020.115145
  • Wu, W. D., G. Liu, S. X. Chen, and H. Zhang. 2013. “Nanoferrofluid Addition Enhances Ammonia/Water Bubble Absorption in an External Magnetic Field.” Energy and Buildings 57: 268–277. https://doi.org/10.1016/j.enbuild.2012.10.032.
  • Wu, X., S. Xu, and M. Jiang. 2018. “Development of Bubble Absorption Refrigeration Technology: A Review.” Renewable and Sustainable Energy Reviews 82: 3468–3482. https://doi.org/10.1016/j.rser.2017.10.109
  • Yang, L., K. Du, X. F. Niu, B. Cheng, and Y. F. Jiang. 2011. “Experimental Study on Enhancement of Ammonia–Water Falling Film Absorption by Adding Nano-Particles.” International Journal of Refrigeration 34 (3): 640–647. https://doi.org/10.1016/j.ijrefrig.2010.12.017
  • Yildiz, A. 2016. “Thermoeconomic Analysis of Diffusion Absorption Refrigeration Systems.” Applied Thermal Engineering 99: 23–31. https://doi.org/10.1016/j.applthermaleng.2016.01.041
  • Yuan, H., J. Zhang, X. Huang, and N. Mei. 2018. “Experimental Investigation on Binary Ammonia–Water and Ternary Ammonia–Water–Lithium Bromide Mixture-Based Absorption Refrigeration Systems for Fishing Ships.” Energy Conversion and Management 166: 13–22. https://doi.org/10.1016/j.enconman.2018.04.013.
  • Yung-Chung, C., C. Wu-Hsing, L. Ching-Yin, and H. Chung-Neng. 2006. “Simulated Annealing Based Optimal Chiller Loading for Saving Energy.” Energy Convers. Manag 47 (15-16): 2044–2058. https://doi.org/10.1016/j.enconman.2005.12.022
  • Zhang, B., W. Chen, Q. Sun, and Z. Miao. 2017. “Numerical Evaluation of Thermal Performances of Diffusion–Absorption Refrigeration Using 1,3-Dimethylimidazolylium Dimethylphosphate/Methanol/Helium as Working Fluid.” Energy Conversion and Management 152: 201–213. https://doi.org/10.1016/j.enconman.2017.09.048.
  • Zhang, L., Y. Liu, Y. Wang, L. Jin, Q. Zhang, and W. Hu. 2018. “Experimental Study on the Enhancement of Mass Transfer Utilizing Fe3O4 Nano Fluids.” Journal of Heat Transfer 140 (1). https://doi.org/10.1115/1.4037398.
  • Zhao, L., W. Cai, X. Ding, and W. Chang. 2013. “Model-based Optimization for Vapor Compression Refrigeration Cycle.” Energy 55: 392–402. https://doi.org/10.1016/j.energy.2013.02.071
  • Zohar, A., M. Jelinek, A. Levy, and I. Borde. 2005. “Numerical Investigation of a Diffusion Absorption Refrigeration Cycle.” International Journal of Refrigeration 28 (4): 515–525. https://doi.org/10.1016/j.ijrefrig.2004.11.003
  • Zohar, A., M. Jelinek, A. Levy, and I. Borde. 2009. “Performance of Diffusion Absorption Refrigeration Cycle with Organic Working Fluids.” International Journal of Refrigeration 32 (6): 1241–1246. https://doi.org/10.1016/j.ijrefrig.2009.01.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.