54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer characteristics of a Williamson fluid flow through a variable porosity regime

ORCID Icon &
Pages 2553-2568 | Received 01 Dec 2022, Accepted 25 May 2023, Published online: 11 Sep 2023

References

  • Akbar, Sher N., S. U. Rahman, R. Ellahi, and S. Nadeem. 2014. “Blood Flow Study of Williamson Fluid Through Stenosed Arteries with Permeable Walls.” The European Physical Journal Plus 129 (11): 256. https://doi.org/10.1140/epjp/i2014-14256-2.
  • Akolade, M. T., T. L. Oyekunle, H. O. Momoh, and M. M. Awad. 2022. “Thermophoretic Movement, Heat Source, and Sink Influence on the Williamson Fluid Past a Riga Surface with Positive and Negative Soret-Dufour Mechanism.” Heat Transfer 51 (5): 4228–4246. https://doi.org/10.1002/htj.22497.
  • Akolade, M. T., and Y. O. Tijani. 2021. “A Comparative Study of Three-Dimensional Flow of Casson–Williamson Nanofluids Past a Riga Plate: Spectral Quasi-Linearization Approach.” Partial Differential Equations in Applied Mathematics 4: 100108. https://doi.org/10.1016/j.padiff.2021.100108.
  • Al-Mdallal, Q. M., Aman Sidra, K. U. Rehman, L. Y. A. Sakkaf, and S. Saranya. 2022. “Numerical Investigation of Heat Generation and Magnetohydrodynamic Flow of Fluid Over a Shrinking Infinite Long Cylinder Through Porous Medium.” Journal of Nanofluids 11 (2): 285–295. https://doi.org/10.1166/jon.2022.1830.
  • Amiri, A., and K. Vafai. 1994. “Analysis of Dispersion Effects and Non-thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media.” International Journal of Heat and Mass Transfer 37 (6): 939–954. https://doi.org/10.1016/0017-9310(94)90219-4.
  • Animasaun, I. L., and A. O. Oyem. 2014. “Effect of Variable Viscosity, Dufour, Soret and Thermal Conductivity on Free Convective Heat and Mass Transfer of Non-Darcian Flow Past Porous Flat Surface.” American Journal of Computational Mathematics 4 (04): 357–365. https://doi.org/10.4236/ajcm.2014.44030.
  • Arafa, Anas A. M., Sameh E Ahmed, and M. M. Allan. 2022. “Peristaltic Flow of Non-Homogeneous Nanofluids Through Variable Porosity and Heat Generating Porous Media with Viscous Dissipation: Entropy Analyses.” Case Studies in Thermal Engineering 32: 101882. https://doi.org/10.1016/j.csite.2022.101882.
  • Benenati, R. F., and C. B. Brosilow. 1962. “Void Fraction Distribution in Beds of Spheres.” AIChE Journal 8 (3): 359–361. https://doi.org/10.1002/aic.690080319.
  • Carnahan, B., H. A. Luther, and J. O. Wilkes. 1969. Applied Numerical Methods. New York: John Wiley.
  • Chamkha, A. J., Camille Issa, and Khalil Khanafer. 2001a. “Natural Convection Due to Solar Radiation from a Vertical Plate Embedded in a Porous Medium with Variable Porosity.” Journal of Porous Media 4 (1): 69–77. https://doi.org/10.1615/JPorMedia.v4.i1.60.
  • Chamkha, A. J., Camille Issa, and Khalil Khanafer. 2001b. “Natural Convection from an Inclined Plate Embedded in a Variable Porosity Porous Medium Due to Solar Radiation.” International Journal of Thermal Sciences 41 (1): 73–81. https://doi.org/10.1016/S1290-0729(01)01305-9.
  • Chen, T. S., and C. F. Yuh. 1980. “Combined Heat Mass Transfer in Natural Convection Along a Vertical Cylinder.” International Journal of Heat and Mass Transfer 23 (4): 451–461. https://doi.org/10.1016/0017-9310(80)90087-3.
  • David, E., G. Lauriat, and P. Cheng. 1991. “A Numerical Solution of Variable Porosity Effects on Natural Convection in a Packed-sphere Cavity.” ASME Journal of Heat and Mass Transfer 113 (2): 391–399. https://doi.org/10.1115/1.2910574.
  • Dhivya, M., P. Loganathan, and K. Vajravelu. 2021. “Chemically Reacting Viscous Fluid Flow on a Permeable Cylinder Susceptible to Oscillations.” International Communications in Heat and Mass Transfer 126: 105477. https://doi.org/10.1016/j.icheatmasstransfer.2021.105477.
  • El-Kabeir, S. M. M., M. A. El-Hakiem, and A. M. Rashad. 2007. “Natural Convection from a Permeable Sphere Embedded in a Variable Porosity Porous Medium Due to Thermal Dispersion.” Nonlinear Analysis: Modelling and Control 12 (3): 345–357. https://doi.org/10.15388/NA.2007.12.3.14693.
  • Hussain, S. M., Jamshed Wasim, A. A. Pasha, Adil Mohammad, and Akram Mohammad. 2022. “Galerkin Finite Element Solution for Electromagnetic Radiative Impact on Viscid Williamson Two-phase Nanofluid Flow via Extendable Surface.” International Communications in Heat and Mass Transfer 137: 106243. https://doi.org/10.1016/j.icheatmasstransfer.2022.106243.
  • Iaseillo, Marcello, Nicola Bianco, W. K. C. Chiu, and V. Naso. 2021. “The Effects of Variable Porosity and Cell Size on the Thermal Performance of Functionally Graded Foams.” International Journal of Thermal Sciences 160: 106696. https://doi.org/10.1016/j.ijthermalsci.2020.106696.
  • Idowu, A. S., M. T. Akolade, T. L. Oyekunle, and J. U. Abubakar. 2021. “Nonlinear Convection Flow of Dissipative Casson Nanofluid Through an Inclined Annular Microchannel with a Porous Medium.” Heat Transfer 50 (4): 3388–3406. https://doi.org/10.1002/htj.22033.
  • Jamshed, W. 2021. “Thermal Augmentation in Solar Aircraft Using Tangent Hyperbolic Hybrid Nanofluid: A Solar Energy Application.” Energy & Environment 33 (6): 1090–1133. https://doi.org/10.1177/0958305X211036671.
  • Jamshed, W., M. R. Eid, S. M. Hussain, Abderrahmane Aissa, Rabia Safdar, Obai Younis, and A. A. Pasha. 2022. “Physical Specifications of MHD Mixed Convective of Ostwald-de Waele Nanofluids in a Vented-Cavity with Inner Elliptic Cylinder.” International Communications in Heat and Mass Transfer 134: 106038. https://doi.org/10.1016/j.icheatmasstransfer.2022.106038.
  • Khan, Z. H., M. Qasim, U. H. Rizwan, and Q. M. Al-Mdallal. 2017. “Closed Form Dual Nature Solutions of Fluid Flow and Heat Transfer Over a Stretching/Shrinking Sheet in a Porous Medium.” Chinese Journal of Physics 55 (4): 1284–1293. https://doi.org/10.1016/j.cjph.2017.07.001.
  • Loganathan, P., and M. Dhivya. 2018. “Thermal and Mass Diffusive Studies on a Moving Vertical Cylinder Entrenched in a Porous Medium.” Latin American Applied Research 48 (2): 119–124. https://doi.org/10.52292/j.laar.2018.269.
  • Loganathan, P., and M. Dhivya. 2020. “Heat and Mass Transfer Analysis of a Convective Williamson Fluid Flow Over a Cylinder.” International Journal of Fluid Mechanics Research 47 (2): 171–189. https://doi.org/10.1615/InterJFluidMechRes.2020027371.
  • Loganathan, P., and M. Dhivya. 2021. “Time Dependent Non-Linear Finite Difference Analysis of Buoyancy-driven Convective Flow Over an Oscillating Porous Moving Vertical Cylinder.” Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91 (1): 89–96. https://doi.org/10.1007/s40010-020-00676-y.
  • Malik, M. Y., M. Bibi, F. Khan, and T. Salahuddin. 2016. “Numerical Solution of Williamson Fluid Flow Past a Stretching Cylinder and Heat Transfer with Variable Thermal Conductivity and Heat Generation/Absorption.” AIP Advances 6 (3): 035101. https://doi.org/10.1063/1.4943398.
  • Motsa, S. S., and I. L. Animasaun. 2015. “A new Numerical Investigation of Some Thermo-Physical Properties on Unsteady MHD non-Darcian Flow Past an Impulsively Started Vertical Surface.” Thermal Science 19 (suppl. 1): 249–258. https://doi.org/10.2298/TSCI15S1S49M.
  • Muthtamilselvan, M., S. Suganya, and Q. M. Al-Mdallal. 2021. “Stagnation-Point Flow of the Williamson Nanofluid Containing Gyrotactic Micro-Organisms.” Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91 (4): 633–648. https://doi.org/10.1007/s40010-021-00764-7.
  • Nagaraju, P., A. J. Chamkha, H. S. Takhar, and B. C. Chandrasekhara. 2001. “Simultaneous Radiative and Convective Heat Transfer in a Variable Porosity Medium.” Heat and Mass Transfer 37 (2–3): 243–250. https://doi.org/10.1007/s002310100191.
  • Nithiarasu, P., K. N. Seetharamu, and T. Sundararajan. 1997. “Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium.” International Journal of Heat and Mass Transfer 40 (16): 3955–3967. https://doi.org/10.1016/S0017-9310(97)00008-2.
  • Pakdee, Watit, and Phadungsak Rattanadecho. 2011. “Natural Convection in a Saturated Variable – Porosity Medium due to Microwave Heating.” ASME Journal of Heat and Mass Transfer 133 (6): 062502. https://doi.org/10.1115/1.4003535.
  • Pal, D., and H. Mondal. 2009. “Radiation Effects on Combined Convection Over a Vertical Flat Plate Embedded in a Porous Medium of Variable Porosity.” Meccanica 44 (2): 133–144. https://doi.org/10.1007/s11012-008-9156-0.
  • Poulikakos, D., and K. Renken. 1987. “Forced Convection in a Channel Filled with Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction.” ASME Journal of Heat and Mass Transfer 109 (4): 880–888. https://doi.org/10.1115/1.3248198.
  • Prasad, V. R., B. Vasu, O. Anwar Beg, and R. D. Parashad. 2012. “Thermal Radiation Effects on Magnetohydrodynamic Free Convection Heat and Mass Transfer from a Sphere in a Variable Porosity Regime.” Communications in Nonlinear Science and Numerical Simulation 17 (2): 654–671. https://doi.org/10.1016/j.cnsns.2011.04.033.
  • Rashidi, M. M., M. T. Akolade, M. M. Awad, A. O. Ajibade, and I. Rashidi. 2021. “Second Law Analysis of Magnetized Casson Nanofluid Flow in Squeezing Geometry with Porous Medium and Thermophysical Influence.” Journal of Taibah University for Science 15 (1): 1013–1026. https://doi.org/10.1080/16583655.2021.2014691.
  • Rizwan, U. H., F. A. Soomro, Mekkaoui Toufik, and Q. M. Al-Mdallal. 2018. “MHD Natural Convection Flow Enclosure in a Corrugated Cavity Filled with a Porous Medium.” International Journal of Heat and Mass Transfer 121: 1168–1178. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.063.
  • Saranya, S., and Q. M. Al-Mdallal. 2020. “Non-Newtonian Ferrofluid Flow Over an Unsteady Contracting Cylinder Under the Influence of Aligned Magnetic Field.” Case Studies in Thermal Engineering 21: 100679. https://doi.org/10.1016/j.csite.2020.100679.
  • Saranya, S., Q. M. Al-Mdallal, and S. Javed. 2021. “Shifted Legendre Collocation Method for the Solution of Unsteady Viscous-Ohmic Dissipative Hybrid Ferrofluid Flow Over a Cylinder.” Nanomaterials 11: 1512. https://doi.org/10.3390/nano11061512
  • Schlichting, H., and K. Gersten. 2001. Boundary Layer Theory. India: Springer.
  • Shafiq, A., A.B. Colak, T.N. Sindhu, Q. M. Al-Mdallal, and T. Abdeljawad. 2021. “Estimation of Unsteady Hydromagnetic Williamson Fuid Fow in a Radiative Surface Through Numerical and Artifcial Neural Network Modeling.” Scientific Reports 11: 14509. https://doi.org/10.1038/s41598-021-93790-9
  • Shahzad, F., W. Jamshed, S. U. D. Sathyanarayanan, A. Aissa, P. Madheshwaran, and A. Mourad. 2021. “Thermal Analysis on Darcy-Forchheimer Swirling Casson Hybrid Nanofluid Flow Inside Parallel Plates in Parabolic Trough Solar Collector: An Application to Solar Aircraft.” International Journal of Energy Research 45 (15): 20812–20834. https://doi.org/10.1002/er.7140.
  • Shih-Wen, Hsiao, P. Cheng, and Chen Chao-Kuang. 1992. “Non-uniform Porosity and Thermal Dispersion Effects on Natural Convection About a Heated Horizontal Cylinder in an Enclosed Porous Medium.” International Journal of Heat and Mass Transfer 35 (12): 3407–3418. https://doi.org/10.1016/0017-9310(92)90227-J.
  • Tijani, Y. O., M. T. Akolade, H. A. Ogunleye, A. T. Adeosun, and Farotimi Oluwaseun. 2023. “On the Generalized Fick’s and Fourier’s Laws for an Unsteady Casson-Williamson Fluids Over a Stretching Surface: A Spectral Approach.” Journal of Nanofluids 12 (1): 91–103. https://doi.org/10.1166/jon.2023.1914.
  • Vafai, K. 1984. “Convective Flow and Heat Transfer in Variable – Porosity Regime.” Journal of Fluid Mechanics 147 (-1): 233–259. https://doi.org/10.1017/S002211208400207X.
  • Vafai, K., R. L. Alkire, and C. L. Tien. 1985. “An Experimental Investigation of Heat Transfer in Variable Porosity Media.” ASME Journal of Heat and Mass Transfer 107 (3): 642–647. https://doi.org/10.1115/1.3247472.
  • Zhixiong, L., A. Shafee, M. Ramzan, H. B. Rokni, and Q. M. Al-Mdallal. 2019. “Simulation of Natural Convection of Fe3O4-Water Ferrofluid in a Circular Porous Cavity in the Presence of a Magnetic Field.” The European Physical Journal Plus 134 (2): 77. https://doi.org/10.1140/epjp/i2019-12433-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.