53
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Magnetohydrodynamic Couette flow of alumina–water nanofluid over a deformable porous channel under uniform transverse magnetic field with entropy optimisation

ORCID Icon & ORCID Icon
Article: 2276125 | Received 23 Jun 2023, Accepted 23 Sep 2023, Published online: 23 Nov 2023

References

  • Abdelhafez, M., A. Abd-Alla, and S. Abo-Dahab. 2022. “MHD Convective Non-Darcy Flow of a Nanofluid Through a Porous Stretching Sheet with Thermal Buoyancy and Chemical Reaction.” Waves in Random and Complex Media, 1–18. https://doi.org/10.1080/17455030.2022.2026524.
  • Abdelmalek, Z., B. Mahanthesh, M. F. M. Basir, M. Imtiaz, J. Mackolil, N. S. Khan, H. A. Nabwey, and I. Tlili. 2020. “Mixed Radiated Magneto Casson Fluid Flow with Arrhenius Activation Energy and Newtonian Heating Effects: Flow and Sensitivity Analysis.” Alexandria Engineering Journal 59 (5): 3991–4011. https://doi.org/10.1016/j.aej.2020.07.006.
  • Ahafiq, A., M. O. Fateh, T. N. Sindhu, and A. Abidi. 2021. “A Study of Dual Stratification on Stagnation Point Walters’ B Nanofluid Flow via Radiative Riga Plate: A Statistical Approach.” The European Physical Journal Plus 136 (4): 1–24. https://doi.org/10.1140/epjp/s13360-021-01394-z.
  • Ahmed, N., U. Khan, and S. T. Mohyud-din. 2017. “MHD Nanofluid Flow Through a Deformable Asymmetric Porous Channel.” Engineering Computations 34 (3): 852–868. https://doi.org/10.1108/EC-05-2016-0169.
  • Al-Zubaidi, A., M. Nazeer, S. Saleem, F. Hussain, and F. Ahmed. 2021. “Flow of Nanofluid Towards a Riga Surface with Heat and Mass Transfer Under the Effects of Activation Energy and Thermal Radiation.” International Journal of Modern Physics B 35 (26): 2150266. https://doi.org/10.1142/S0217979221502660.
  • Al-Zubaidi, A., V. S. Sajja, R. Gadamsetty, G. V. R. Reddy, M. J. Babu, and I. L. Animasaun. 2022. “Dynamics Over an Inclined Surface When Entropy Generation, Ohmic Heating, and Lorentz Force are Significant: Comparative Analysis Between Water-Copper Nanofluid and Water-Copper-Iron (II, III) Oxide Hybrid Nanofluid.” Waves in Random and Complex Media, 1–23. https://doi.org/10.1080/17455030.2022.2089368.
  • Barry, S. I., K. H. Parkerf, and G. K. Aldis. 1991. “Fluid Flow Over a Thin Deformable Porous Layer.” The Journal of Applied Mathematics and Physics 42: 633–648. https://doi.org/10.1007/BF00944763.
  • Bejan, A. 1982a. “Second-Law Analysis in Heat Transfer and Thermal Design.” Advanced Heat Transfer 15: 1–58. https://doi.org/10.1016/S0065-2717(08)70172-2.
  • Bejan, A. 1982b. Entropy Generation Through Heat Transfer and Fluid Flow. New York: Wiley.
  • Choi, S. U. S., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” ASME International Mechanical Engineering Congress and Exposition 66: 99–105.
  • Colak, A. B., A. Shafiq, and T. N. Sindhu. 2022a. “Modeling of Darcy–Forchheimer Bioconvective Powell Eyring Nanofluid with Artificial Neural Network.” Chinese Journal of Physics 77: 2435–2453. https://doi.org/10.1016/j.cjph.2022.04.004.
  • Colak, A. B., T. N. Sindhu, S. A. Lone, M. T. Akhtar, and A. Shafiq. 2022b. “A Comparative Analysis of Maximum Likelihood Estimation and Artificial Neural Network Modeling to Assess Electrical Component Reliability.” Quality and Reliability Engineering International. https://doi.org/10.1002/qre.3233.
  • Das, U. J. 2021. “Entropy Generation in MHD Flow Through a Deformable Porous Layer with Constant Injection/Suction at the Boundary.” Latin American Applied Research – An International Journal 51 (4): 249. https://doi.org/10.52292/j.laar.2021.669.
  • Das, S., and R. N. Jana. 2014. “Entropy Generation Due to MHD Flow in a Porous Channel with Navier Slip.” Ain Shams Engineering Journal 5 (2): 575–584. https://doi.org/10.1016/j.asej.2013.11.005.
  • Das, U. J., and I. Patgiri. 2022. “Entropy Analysis in MHD Couette Flow of Chemically Reacting Viscoelastic Fluid Past a Deformable Porous Channel.” Heat Transfer 51 (5): 4012–4032. https://doi.org/10.1002/htj.22487.
  • Eid, M. R. 2020. “Thermal Characteristics of 3D Nanofluid Flow Over a Convectively Heated Riga Surface in a Darcy-Forchheimer Porous Material with Linear Thermal Radiation: An Optimal Analysis.” Arabian Journal for Science and Engineering 45 (11): 9803–9814. https://doi.org/10.1007/s13369-020-04943-3.
  • Eswaramoorthi, S., S. Divya, M. Faisal, and N. Namgyel. 2022. “Entropy and Heat Transfer Analysis for MHD Flow of Cu/Ag-Water-Based Nanofluids on Heated 3D Plate with Nonlinear Radiation.” Mathematical Problems in Engineering 2022: 1–14. https://doi.org/10.1155/2022/7319988.
  • Famakinwa, O. A., O. K. Koriko, and K. S. Adegbie. 2022. “Effects of Viscous Dissipation and Thermal Radiation on Time Dependent Incompressible Squeezing Flow of CuO-Al2O3/ Water Hybrid Nanofluid Between two Parallel Plates with Variable Viscosity.” Journal of Computational Mathematics and Data Science 5: 100062. https://doi.org/10.1016/j.jcmds.2022.100062.
  • Gladys, T., and G. V. R. Reddy. 2022. “Contributions of Variable Viscosity and Thermal Conductivity on the Dynamics of non-Newtonian Nanofluids Flow Past an Accelerating Vertical Plate.” Partial Differential Equations in Applied Mathematics 5: 100264. https://doi.org/10.1016/j.padiff.2022.100264
  • Hayat, T., S. Qayyum, A. Alsaedi, and B. Ahmed. 2020. “Entropy Generation Minimization: Darcy-Forchheimer Nanofluid Flow Due to Curved Stretching Sheet with Partial Slip.” International Communications in Heat and Mass Transfer 111: 104445. https://doi.org/10.1016/j.icheatmasstransfer.2019.104445.
  • Hayat, T., A. Shafiq, and A. Alsaedi. 2015. “MHD Axisymmetric Flow of Third Grade Fluid by a Stretching Cylinder.” Alexandria Engineering Journal 54 (2): 205–212. https://doi.org/10.1016/j.aej.2015.03.013
  • Hayat, T., A. Shafiq, A. Alsaedi, and M. Awais. 2013. “MHD Axisymmetric Flow of Third Grade Fluid Between Stretching Sheets with Heat Transfer.” Computers & Fluids 86: 103–108. https://doi.org/10.1016/j.compfluid.2013.07.003.
  • Hussain, S., K. Rasheed, A. Ali, N. Vrinceanu, A. Alshehri, and Z. Shah. 2022. “A Sensitivity Analysis of MHD Nanofluid Flow Across an Exponentially Stretched Surface with Non-Uniform Heat Flux by Response Surface Methodology.” Scientific Reports 12: 18523. https://doi.org/10.1038/s41598-022-22970-y.
  • Jeevandhar, S. P., V. Kedla, N. Gullapalli, and S. K. Thavada. 2021. “Natural Convective Effects on MHD Boundary Layer Nanofluid Flow Over an Exponentially Accelerating Vertical Plate.” Biointerface Research in Applied Chemistry 11 (6): 13790–13805. https://doi.org/10.33263/BRIAC116.1379013805.
  • Jeevitha, S., M. Chitra, and B. R. Kumar. 2022. “MHD Flow in a Rotating Vertical Cone Through a Porous Medium.” Heat Transfer 52 (3): 2165–2185. https://doi.org/10.1002/htj.22779.
  • Khentout, A., M. Kezzar, M. R. Sari, T. Ismail, M. S. TichTich, S. Boutelba, and M. R. Eid. 2022. “The Electrical Magnetohydrodynamic (MHD) and Shape Factor Impacts in a Mixture Fluid Suspended by Hybrid Nanoparticles Between Non-Parallel Plates.” Proceeding of the Institution of Mechanical Engineeers, Part E: Journal of Process Mechanical Engineering 236 (3): 1134–1143. https://doi.org/10.1177/09544089211057971.
  • Krishna, G. G., S. Sreenadh, and A. N. S. Srinivas. 2019. “Entropy Generation in Couette Flow Through a Deformable Porous Channel.” Applied Mathematics and Nonlinear Sciences 4 (2): 575–590. https://doi.org/10.2478/AMNS.2019.2.00054.
  • Lone, S. A., M. A. Alyami, A. Saeed, A. Dawar, P. Kumam, and W. Kumam. 2022. “MHD Micropolar Hybrid Nanofluid Flow Over a Flat Surface Subject to Mixed Convection and Thermal Radiation.” Scientific Reports 12 (1): 17283. https://doi.org/10.1038/s41598-022-21255-8.
  • Mahabaleshwar, U. S., K. N. Sneha, and H. Huang. 2021. “An Effect of MHD and Radiation on CNTS-Water Based Nanofluid Due to Stretching Sheet in a Newtonian Fluid.” Case Studies in Thermal Engineering 28 (2): 101462. https://doi.org/10.1016/j.csite.2021.101462.
  • Mahmood, Z., S. E. Alhazmi, A. Alhowaity, R. Marzouki, N. Al-Ansari, and U. Khan. 2022. “MHD Mixed Convective Stagnation Point Flow of Nanofluid Past a Permeable Stretching Sheet with Nanoparticles Aggregation and Thermal Stratification.” Scientific Reports 12 (1): 16020. https://doi.org/10.1038/s41598-022-20074-1.
  • Majeed, A., F. M. Noori, A. Zeeshan, T. Mahmood, S. U. Rehman, and I. Khan. 2018. “Analysis of Activation Energy in Magnetohydrodynamic Flow with Chemical Reaction and Second Order Momentum Slip Model.” Case Studies in Thermal Engineering 12: 765–773. https://doi.org/10.1016/j.csite.2018.10.007.
  • Mburu, Z. M., S. Mondal, P. Sibanda, and R. Sharma. 2021. “A Numerical Study of Entropy Generation on Oldroyd-B Nanofluid Flow Past a Riga Plate.” Journal of Thermal Engineering 7 (4): 845–866. https://doi.org/10.18186/thermal.930653.
  • Munivenkatappa, U., S. Shankar, V. B. Nagendra, and N. Samuel. 2022. “Study on MHD Flow Over a Stretching Surface with Convective Boundary Condition by Numerical Method.” Biointerface Research in Applied Chemistry 12 (5): 6437–6446. https://doi.org/10.33263/BRIAC125.64376446.
  • Nalivela, N. R., S. R. Vempati, B. R. Reddy, and Y. D. Reddy. 2022. “Viscous Dissipation and Thermal Radiation Impact on MHD Mass Transfer Natural Convective Flow Over a Stretching Sheet.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1989–1996. https://doi.org/10.1177/09544089221081339.
  • Narendra, G., K. Govardhan, and G. S. Sharma. 2021. “Viscous Dissipation and Thermal Radiation Effects on the Flow of Maxwell Nanofluid Over a Stretching Surface.” International Journal of Nonlinear Analysis and Applications 12 (2): 1267–1287. https://doi.org/10.22075/i.jnaa.2020.18958.2045.
  • Naseem, A., A. Mahmood, J. I. Siddique, and L. Zhao. 2018. “Infiltration of MHD Liquid Into a Deformable Porous Material.” Results in Physics 8: 71–75. https://doi.org/10.1016/j.rinp.2017.10.059.
  • Naseem, F., A. Shafiq, L. Zhao, and A. Naseem. 2017. “MHD Biconvective Flow of Powell Eyring Nanofluid Over Stretched Surface.” AIP Advances 7 (6): 065013. https://doi.org/10.1063/1.4983014
  • Phakirappa, J., S. Priyanka, P. H. Veena, and V. K. Pravin. 2022. “MHD Free Convective Heat and Mass Transfer Flow from a Vertical Porous Surface with Variable Thermal Conductivity, Variable Mass Diffusivity and Thermal Diffusion Including Viscous Dissipation and Chemical Reaction.” International Journal of Applied Mechanics and Engineering 27 (3): 127–136. https://doi.org/10.2478/ijame-2022-0040.
  • Prabakaran, R., S. Eswaramoorthi, K. Loganathan, and S. Gyeltshen. 2022. “Thermal Radiation and Viscous Dissipation Impact of Water and Kerosene-Based Carbon Nanotubes Over a Heated Riga Sheet.” Journal of Nanomaterials 2022: 1865763. https://doi.org/10.1155/2022/1865763.
  • Rasool, G., T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. 2020. “Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface.” Entropy 22 (1): 18. https://doi.org/10.3390/e22010018.
  • Reddy, G. V. R., K. V. Chandra Sekhar, and B. O. Falodun. 2022. “Multiple Slip Effects on Unsteady MHD Casson Nanofluid Flow Over a Porous Stretching Sheet.” Journal of Applied Nonlinear Dynamics 11 (3): 651–666. https://doi.org/10.5890/JAND.2022.09.009
  • Reddy, K. V., and G. V. R. Reddy. 2023. “Outlining the Impact of Melting on MHD Casson Fluid Flow Past a Stretching Sheet in a Porous Medium with Radiation.” Biointerface Research in Applied Chemistry 13 (1): 42. https://doi.org/10.33263/BRIAC131.042.
  • Reddy, K. V., G. V. R. Reddy, A. Akgul, R. Jarrar, H. Shanak, and J. Asad. 2022a. “Numerical Solution of MHD Casson Fluid Flow with Variable Properties Across an Inclined Porous Stretching Sheet.” AIMS Mathematics 7 (12): 20524–20542. https://doi.org/10.3934/math.20221124.
  • Reddy, K. V., G. V. R. Reddy, and A. J. Chamkha. 2022. “Effects of Viscous Dissipation and Thermal Radiation on an Electrically Conducting Casson-Carreau Nanofluids Flow with Cattaneo-Christov Heat Flux Model.” Journal of Nanofluids 11 (2): 214–226. https://doi.org/10.1166/jon.2022.1836.
  • Reddy, K. V., G. V. R. Reddy, A. Sandhya, and Y. H. Krishna. 2022b. “Numerical Solution of MHD, Soret, Dufour, and Thermal Radiation Contributions on Unsteady Free Convection Motion of Casson Liquid Past a Semi-Infinite Vertical Porous Plate.” Heat Transfer 51 (3): 2837–2858. https://doi.org/10.1002/htj.22452
  • Reddy, P. S., and P. Sreedevi. 2022. “Impact of Chemical Reaction and Double Stratification on Heat and Mass Transfer Characteristics of Nanofluid Flow Over Porous Stretching Sheet with Thermal Radiation.” International Journal of Ambient Energy 43 (1): 1626–1636. https://doi.org/10.1080/01430750.2020.1712240.
  • Reddy, G. V. R., and K. Vijaya. 2022. “The Buongiorno Model with Brownian and Thermophoretic Diffusion for MHD Casson Nanofluid Over an Inclined Porous Surface.” Journal of Naval Architecture and Marine Engineering 19 (1): 31–45. https://doi.org/10.3329/jname.v19i1.50863
  • Rooman, M., M. A. Jan, Z. Shah, P. Kumam, and A. Alshehri. 2021. “Entropy Optimization and Heat Transfer Analysis in MHD Williamson Nanofluid Flow Over a Vertical Riga Plate with non-Linear Thermal Radiation.” Scientific Reports 11 (1): 18386. https://doi.org/10.1038/s41598-021-97874-4.
  • Rosseland, S. 1931. Astrophysik and atom-theorestischegrundlagen. Berlin: Springer.
  • Saeed, A., and T. Gul. 2021. “Bioconvection Casson Nanofluid Flow Together with Darcy-Forchheimer Due to a Rotating Disk with Thermal Radiation and Arrehenius Activation Energy.” SN Applied Sciences 3 (1): 78. https://doi.org/10.1007/s42452-020-04007-z.
  • Sahoo, A., and R. Nandkeolyar. 2021. “Entropy Generation and Dissipative Heat Transfer Analysis of Mixed Convective Hydromagnetic Flow of a Casson Nanofluid with Thermal Radiation and Hall Current.” Scientific Reports 11 (1): 3926. https://doi.org/10.1038/s41598-021-83124-0.
  • Saritha, K., R. Muthusami, and M. Rameshkumar. 2021. “The Effect of Viscous Dissipation and Thermal Radiation in Siskoferronanofluid Flow Over a Porous Medium.” International Journal of Engineering Research in Africa 54: 118–131. https://doi.org/10.4028/www.scientific.net/JERA.54.118.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2022a. “Analyzing Activation Energy and Binary Chemical Reaction Effects with Artificial Intelligence Approach in Axisymmetric Flow of Third Grade Nanofluid Subject to Soret and Dufour Effects.” Heat Transfer Research 54 (3). https://doi.org/10.1615/HeatTransRes.2022045008.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2022b. “Reliability Investigation of Exponentiated Weibull Distribution Using IPL Through Numerical and Artificial Neural Network Modelling.” Quality and Reliability Engineering International 38 (7): 3616–3631. https://doi.org/10.1002/qre.3155.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2022c. “Significance of Bioconvective Flow of MHD Thixotropic Nanofluid Passing Through a Vertical Surface by Machine Learning Algorithm.” Chinese Journal of Physics 80: 427–444. https://doi.org/10.1016/j.cjph.2022.08.008.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2023. “Modeling of Soret and Dufour’s Convective Heat Transfer in Nanofluid Flow through a Moving Needle with Artificial Neural Network.” Arabian Journal for Science and Engineering 48 (3): 2807–2820. https://doi.org/10.1007/s13369-022-06945-9
  • Shafiq, A., A. B. Colak, T. N. Sindhu, and T. Muhammad. 2022. “Optimization of Darcy-Forchheimer Squeezing Flow in Nonlinear Stratified Fluid Under Convective Conditions with Artificial Neural Network.” Heat Transfer Research 53 (3): 67–89. https://doi.org/10.1615/HeatTransRes.2021041018.
  • Shafiq, A., Z. Hammouch, and T. N. Sindhu. 2017. “Bioconvective MHD Flow of Tangent Hyperbolic Nanofluid with Newtonian Heating.” International Journal of Mechanical Sciences 133: 759–766. https://doi.org/10.1016/j.ijmecsci.2017.07.048.
  • Shafiq, A., F. Mebarek-Oudina, T. N. Sindhu, and G. Rasool. 2022. “Sensitivity Analysis for Walters’ B Nanoliquid Flow Over a Radiative Riga Surface by RSM.” Scientia Iranica 29 (3): 1236–1249.
  • Shafiq, A., M. M. Rashidi, Z. Hammouch, and I. Khan. 2019. “Analytical Investigation of Stagnation Point Flow of Williamson Liquid with Melting Phenomenon.” Physica Scripta 94 (3): 035204. https://doi.org/10.1088/1402-4896/aaf548
  • Shafiq, A., T. N. Sindhu, and C. M. Khalique. 2020. “Numerical Investigation and Sensitivity Analysis on Bioconvective Tangent Hyperbolic Nanofluid Flow Towards Stretching Surface by Response Surface Methodology.” Alexandria Engineering Journal 59 (6): 4533–4548. https://doi.org/10.1016/j.aej.2020.08.007.
  • Shafique, A., Z. U. Nasir, M. I. Asjad, M. Nazar, and F. Jarad. 2022. "Effect of Diffusion-Thermo on MHD Flow of a Jeffery Fluid Past an Exponentially Accelerated Vertical Plate with Chemical Reaction and Heat Generation.” Mathematical Problems in Engineering 2022: 6279498. https://doi.org/10.1155/2022/6279498.
  • Shoaid, M., S. Naz, K. S. Nisar, M. A. Z. Raja, S. Aslam, and I. Ahmed. 2022. “MHD Casson Nanofluid in Darcy-Forchheimer Porous Medium in the Presence of Heat Source and Arrhenious Activation Energy: Applications of Neural Networks.” International Journal of Modelling and Simulation 43 (4): 438–461. https://doi.org/10.1080/02286203.2022.2091973.
  • Sindhu, T. N., and A. Atangana. 2021. “Reliability Analysis Incorporating Exponentiated Inverse Weibull Distribution and Inverse Power law.” Quality and Reliability Engineering International 37 (6): 2399–2422. https://doi.org/10.1002/qre.2864.
  • Sitamahalakshmi, V., G. Venkata, V. R. R. Reddy, and B. O. Falodun. 2023. “Heat and Mass Transfer Effects on MHD Casson Fluid Flow of Blood in Stretching Permeable Vessel.” Journal of Applied Nonlinear Dynamics 12 (1): 87–97. https://doi.org/10.5890/JAND.2023.03.006.
  • Sreenadh, S., G. G. Krishna, A. N. S. Srinivas, and E. Sudhakara. 2018. “Entropy Generation Analysis for MHD Flow Through a Vertical Deformable Porous Layer.” Journal of Porous Media 21 (6): 523–538. https://doi.org/10.1615/JPorMedia.v21.i6.30
  • Tharapatla, G., P. Rajakumari, and R. Reddy. 2021. “Heat and Mass Transfer Effects on MHD Non-Newtonian Fluids Flow Through an Inclined Thermally-Stratified Porous Medium.” World Journal of Engineering, https://doi.org/10.1108/wje-02-2021-0099.
  • Vyakaranam, S., and G. V. R. Reddy. 2022. “MHD Casson Nano Fluid Over a Nonlinear Penetrable Elongated Sheet with Thermal Radiation and Chemical Reaction.” https://doi.org/10.22541/au.164865097.76629964/v1
  • Zari, I., A. Shafiq, G. Rasool, T. N. Sindhu, and T. S. Khan. 2021. “Double-Stratified Marangoni Boundary Layer Flow of Casson Nanoliquid: Probable Error Application.” Journal of Thermal Analysis and Calorimetry 147 (12): 6913–6929. https://doi.org/10.1007/s10973-021-10989-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.