40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A computational ascertainment of Hall and ion slip implications over a stretched regime with chemical reaction and internal heat source

ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2288145 | Received 13 Oct 2023, Accepted 18 Nov 2023, Published online: 19 Dec 2023

References

  • Ariman, T., M. A. Turk, and N. D. Sylvester. 1974. “Application of Microcontinuum Fluid Mechanics.” International Journal of Engineering Science 12 (4): 273–293. https://doi.org/10.1016/0020-7225(74)90059-7.
  • Attia, H. 2007. “Analytical Solution for Flow of a Dusty Fluid in a Circular Pipe with Hall and Ion Slip Effects.” Chemical Engineering Communications 194 (10): 1287–1296. https://doi.org/10.1080/00986440701399780.
  • Baby Rani, Ch., N. Vedavathi, K. S. Balamurugan, and G. Dharmaiah. 2020. “Hall And Ion Slip Effects On Ag - Water Based Mhd Nano Fluid Flow Over A Semi Infinite Vertical Plate Embedded In A Porous Medium.” Frontiers in Heat and Mass Transfer 14 (6): 1–11. https://doi.org/10.5098/hmt.14.6.
  • Bhargavi, D. N., K. Gangadhar, and A. J. Chamkha. 2022. “Graphene-gold/PDMS Maxwell Hybrid Nanofluidic Flow in a Squeezed Channel with Linear and Irregular Radiations.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0 (0). https://doi.org/10.1177/09544089221139696.
  • Bhatti, M. M., S. Ullah Khan, O. Anwar Bég, and A. Kadir. 2019. “Differential Transform Solution for Hall and ion-Slip Effects on Radiative-Convective Casson Flow from a Stretching Sheet with Convective Heating.” Heat Transfer-Asian Res. 49 (2): 872–888. https://doi.org/10.1002/htj.21643.
  • Choudhury, R., and P. Dhar. 2014. “Ion Slip Effect on Viscoelastic Fluid Flow Past an Impulsively Started Infinite Vertical Plate Embedded in a Porous Medium with Chemical Reaction.” International Scholarly Research Notices 2014: 481308. https://doi.org/10.1155/2014/481308.
  • Dharmaiah, G., W. Sridhar, K. S. Balamurugan, and K. Chandra Kala. 2022. “Hall and Ion Slip Impact on Magneto-Titanium Alloy Nanoliquid with Diffusion Thermo and Radiation Absorption.” International Journal Of Ambient Energy 43 (1): 3507–3517. https://doi.org/10.1080/01430750.2020.1831597.
  • Elangovan, K., K. Subbarao, and Kotha Gangadhar. 2022a. “An Analytical Solution for Radioactive MHD Flow TiO2–Fe3O4/H2O Nanofluid and its Biological Applications.” International Journal of Ambient Energy 43 (1): 7576–7587. https://doi.org/10.1080/01430750.2022.2073264.
  • Elangovan, K., K. Subbarao, and K. Gangadhar. 2022b. “Entropy Minimization for Variable Viscous Couple Stress Fluid Flow Over a Channel with Thermal Radiation and Heat Source/Sink.” Journal of Thermal Analysis and Calorimetry 147 (23): 13499–13507. https://doi.org/10.1007/s10973-022-11510-5.
  • Ganesh, Ganugapati Raghavendra, and Wuriti Sridhar. 2021. “MHD Radiative Casson-Nanofluid Stream Above a Nonlinear Extending Surface Including Chemical Reaction Through Darcy-Forchiemer Medium.” Heat Transfer 50 (8): 7691–7711. https://doi.org/10.1002/htj.22249.
  • Gangadhar, K., K. BhanuLakshmi, T. Kannan, and Ali J. Chamkha. 2022. “Bioconvective Magnetized Oldroyd-B Nanofluid Flow in the Presence of Joule Heating with Gyrotactic Microorganisms.” Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2022.2050441.
  • Gangadhar, K., T. Kannan, and P. Jayalakshmi. 2017. “Magnetohydrodynamic Micropolar Nanofluid Past a Permeable Stretching/Shrinking Sheet with Newtonian Heating.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (11): 4379–4391. https://doi.org/10.1007/s40430-017-0765-1.
  • Gangadhar, K., M. A. Kumari, and A. J. Chamkha. 2022. “EMHD Flow of Radiative Second-Grade Nanofluid Over a Riga Plate due to Convective Heating: Revised Buongiorno’s Nanofluid Model.” Arabian Journal for Science and Engineering 47 (7): 8093–8103. https://doi.org/10.1007/s13369-021-06092-7.
  • Gangadhar, K., M. A. Kumari, and M. Venkata Subba Rao. 2022. “Oldroyd-B Nanoliquid Flow Through a Triple Stratified Medium Submerged with Gyrotactic Bioconvection and Nonlinear Radiations.” Arabian Journal for Science and Engineering 47 (7): 8863–8875. https://doi.org/10.1007/s13369-021-06412-x.
  • Gangadhar, Kotha, Manda Aruna Kumari, M. Venkata Subba Rao, Khaled Alnefaie, Ilyas Khan, and Mulugeta Andualem. 2022. “Magnetization for Burgers’ Fluid Subject to Convective Heating and Heterogeneous-Homogeneous Reactions.” Mathematical Problems in Engineering 2022 (2747676): 1–15. https://doi.org/10.1155/2022/2747676.
  • Gangadhar, K., K. B. Lakshmi, and T. Kannan. 2022. “Stefan Blowing on Chemically Reactive Nano-Fluid Flow Containing Gyrotactic Microorganisms with Leading Edge Accretion (or) Ablation and Thermal Radiation.” Indian Journal of Physics 96 (10): 2827–2840. https://doi.org/10.1007/s12648-021-02179-x.
  • Gangadhar, K., P. Manasa Seshakumari, M. Venkata Subba Rao, and A. J. Chamkha. 2022. “Biconvective Transport of Magnetized Couple Stress Fluid Over a Radiative Paraboloid of Revolution.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236 (4): 1661–1670. https://doi.org/10.1177/09544089211072715.
  • Gangadhar, K., E. Mary Victoria, K. Bhanu Lakshmi, and A. J. Chamkha. 2022. “Nonlinear Radiation Phenomena for Casson–Maxwell Nanoliquid Flow with Chemical Reactions.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237: 2123–2133. https://doi.org/10.1177/09544089221132356.
  • Gangadhar, K., D. Naga Bhargavi, M. Venkata Subba Rao, and Ali J Chamkha. 2021. “Entropy Minimization on Magnetized Boussinesq Couple Stress Fluid with non-Uniform Heat Generation.” Physica Scripta 96 (9): 095205. https://doi.org/10.1088/1402-4896/ac03de.
  • Gangadhar, K., M. Prameela, and A. J. Chamkha. 2022. “Thermally Radiated Micro-Polar Fluid with Space-Dependent Heat Source: Modified Cattaneo-Christov Heat Flux Theory.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237: 2144–2156. https://doi.org/10.1177/09544089221131679.
  • Hadimoto, B., and T. Tokioka. 1969. “Two-dimensional Shear Flows of Linear Micropolar Fluids.” International Journal of Engineering Science 7 (5): 515–522. https://doi.org/10.1016/0020-7225(69)90036-6.
  • Khan, Sohail A., T. Hayat, and A. Alsaedi. 2023. “Bioconvection Entropy Optimized Flow of Reiner-Rivlin Nanoliquid with Motile Microorganisms.” Alexandria Engineering Journal 79: 81–92. https://doi.org/10.1016/j.aej.2023.07.069.
  • Khan, Sohail A., Aneeta Razaq, A. Alsaedi, and T. Hayat. 2023. “Modified Thermal and Solutal Fluxes Through Convective Flow of Reiner-Rivlin Material.” Energy 283: 128516. https://doi.org/10.1016/j.energy.2023.128516.
  • Khonsari, M. M. 1990. “On the Self-Excited Whirl Orbits of a Journal in a Sleave Bearing Lubricated with Micropolar Fluids.” Acta Mechanica 81 (3-4): 235–244. https://doi.org/10.1007/BF01176991.
  • Lee, J. D., and A. C. Eringen. 1971. “Eringen Boundary Effects of Orientation of Numatic Liquid Crystals.” The Journal of Chemical Physics 55 (9): 4509–4512. https://doi.org/10.1063/1.1676782.
  • Mabood, F., and S. M. Ibrahim. 2016. “Effects of Soret and Non-Uniform Heat Source on MHD Non-Darcian Convective Flow Over a Stretching Sheet in a Dissipative Micropolar Fluid with Radiation.” Journal of Applied Fluid Mechanics 9 (5): 2503–2513. https://doi.org/10.18869/acadpub.jafm.68.236.24674.
  • Mabood, F., S. M. Ibrahim, M. M. Rashidi, M. S. Shadloo, and G. Lorenzini. 2016. “Non-uniform Heat Source/Sink and Soret Effects on MHD non-Darcian Convective Flow Past a Stretching Sheet in a Micropolar Fluid with Radiation.” International Journal of Heat and Mass Transfer 93: 674–682. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.014.
  • Mahmoud, M. A. A., and S. E. Waheed. 2012. “MHD Flow and Heat Transfer of a Micropolar Fluid Over a Stretching Surface with Heat Generation (Absorption) and Slip Velocity.” Journal of the Egyptian Mathematical Society 20 (1): 20–27. https://doi.org/10.1016/j.joems.2011.12.009.
  • Mohamed, R. A., and S. M. Abo-Dahab. 2009. “Influence of Chemical Reaction and Thermal Radiation on the Heat and Mass Transfer in MHD Micropolar Flow Over a Vertical Moving Porous Plate in a Porous Medium with Heat Generation.” International Journal of Thermal Sciences 48 (9): 1800–1813. https://doi.org/10.1016/j.ijthermalsci.2009.01.019.
  • Pal, D., B. Talukdar, I. S. Shivakumara, and K. Vajravelu. 2012. “Effects of Hall Current and Chemical Reaction on Oscillatory Mixed Convection-Radiation of a Micropolar Fluid in a Rotating System.” Chemical Engineering Communications 199 (8): 943–965. https://doi.org/10.1080/00986445.2011.616248.
  • Ramesh, K., D. Tripathi, O. Anwar Bég, and A. Kadir. 2018. “Slip and Hall Current Effects on Jeffrey Fluid Suspension Flow in a Peristaltic Hydromagnetic Blood Micropump.” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43: 675–692. https://doi.org/10.1007/s40997-018-0230-5.
  • Rashidi, M. M., S. A. Mohimanian, and S. Abbasbandy. 2011. “Analytic Approximation Solutions for Heat Transfer of a Micropolar Fluid Through a Porous Medium with Radiation.” Communications in Non-Linear Science and Numerical Simulation 16 (4): 1874–1879. https://doi.org/10.1016/j.cnsns.2010.08.016.
  • Razaq, Aneeta, Tasawar Hayat, Sohail A. Khan, and Shaher Momani. 2023. “ATSS Model Based upon Applications of Cattaneo-Christov Thermal Analysis for Entropy Optimized Ternary Nanomaterial Flow with Homogeneous-Heterogeneous Chemical Reactions.” Alexandria Engineering Journal 79: 390–401. https://doi.org/10.1016/j.aej.2023.08.013.
  • Sandeep, N., and C. Sulochana. 2015. “Dual Solutions for Unsteady Mixed Convection Flow of MHD Micropolar Fluid Over a Stretching /Shrinking Sheet with non-Uniform Heat Source/Sink.” Engineering Science and Technology, an International Journal 18 (4): 738–745. https://doi.org/10.1016/j.jestch.2015.05.006.
  • Shateyi, S., and S. S. Motsa. 2011. “Boundary Layer Flow and Double Diffusion Over an Unsteady Stretching Surface with Hall Effect.” Chemical Engineering Communications 198 (12): 1545–1565. https://doi.org/10.1080/00986445.2011.555488.
  • Singh, K., and M. Kumar. 2016c. “Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption.” International Journal of Chemical Engineering 2016: 8190234. https://doi.org/10.1155/2016/8190234.
  • Uddin, Z., M. Kumar, and S. Harmand. 2014. “Influence of Thermal Radiation and Heat Generation//Absorption on MHD Heat Transfer Flow of a Micropolar Fluid Past a Wedge with Hall and Ion Slip Currents.” Thermal Science 18 (suppl.2): S489–S502. https://doi.org/10.2298/TSCI110712085U.
  • Venkata Ramana, K., K. Gangadhar, and T. Kannan. 2022. “Cattaneo–Christov Heat Flux Theory on Transverse MHD Oldroyd-B Liquid Over Nonlinear Stretched Flow.” Journal of Thermal Analysis and Calorimetry 147 (3): 2749–2759. https://doi.org/10.1007/s10973-021-10568-x.
  • Venkata Subba Rao, M., K. Gangadhar, and P. L. N. Varma. 2018. “A Spectral Relaxation Method for Three-Dimensional MHD Flow of Nanofluid Flow Over an Exponentially Stretching Sheet due to Convective Heating: An Application to Solar Energy.” Indian Journal of Physics 92 (12): 1577–1588. https://doi.org/10.1007/s12648-018-1226-0.
  • Ziabakhsh, Z., G. Domairry, and H. Bararnia. 2009b. “Analytical Solution of non-Newtonian Micropolar Fluid Flow with Uniform Suction/Blowing and Heat Generation.” Journal of the Taiwan Institute of Chemical Engineers 40 (4): 443–451. https://doi.org/10.1016/j.jtice.2008.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.